Service of SURF
© 2025 SURF
During the 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, Nepal, numerous Nepalese Pagodas suffered extensive damage while others collapsed. Risk reduction strategies implemented in the region focused on disassembling historical structures and rebuilding them with modern material without in depth analysis of why they suffer damage and collapse. The aim of this paper is to evaluate the effectiveness of low-cost, low-intervention, reversible repair and strengthening options for the Nepalese Pagodas. As a case study, the Jaisedewal Temple, typical example of the Nepalese architectural style, was investigated. A nonlinear three-dimensional finite element model of the Jaisedewal Temple was developed and the seismic performance of the temple was assessed by undertaking linear, nonlinear static and nonlinear dynamic analyses. Also, different structural intervention options, suggested by local engineers and architects working in the restoration of temples in Nepal, were examined for their efficacy to withstand strong earthquake vibrations. Additionally, the seismic response of the exposed foundation that the Nepalese Pagodas are sitting on was investigated. From the results analysis, it was found that pushover analysis failed to capture the type of failure which highlights the necessity to perform time-history analysis to accurately evaluate the seismic response of the investigated temple. Also, stiffening the connections along the temple was found to enhance the seismic behaviour of the temple, while strengthening the plinth base was concluded to be insignificant. Outputs from this research could contribute towards the strategic planning and conservation of multi-tiered temples across Nepal and reduce their risk to future earthquake damage without seriously affecting their beautiful architectural heritage.
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long-span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction-affected level-ground motions systematically impose a greater threat to precast-concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft-soil records and even more to hard-soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior.
LINK
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures.The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures. The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.