Service of SURF
© 2025 SURF
KNAW – minisymposium ‘Aardbevingsbestendige woningen’ 24 maart 2020Ondanks absentie van het symposium door de Corona crisis is dit boekje samengesteld voor digitale verzending en het drukken van een papieren versie.
This paper aims to quantify the evolution of damage in masonry walls under induced seismicity. A damage index equation, which is a function of the evolution of shear slippage and opening of the mortar joints, as well as of the drift ratio of masonry walls, was proposed herein. Initially, a dataset of experimental tests from in-plane quasi-static and cyclic tests on masonry walls was considered. The experimentally obtained crack patterns were investigated and their correlation with damage propagation was studied. Using a software based on the Distinct Element Method, a numerical model was developed and validated against full-scale experimental tests obtained from the literature. Wall panels representing common typologies of house façades of unreinforced masonry buildings in Northern Europe i.e. near the Groningen gas field in the Netherlands, were numerically investigated. The accumulated damage within the seismic response of the masonry walls was investigated by means of representative harmonic load excitations and an incremental dynamic analysis based on induced seismicity records from Groningen region. The ability of this index to capture different damage situations is demonstrated. The proposed methodology could also be applied to quantify damage and accumulation in masonry during strong earthquakes and aftershocks too.
This publication gives a different take on energy and energy transition. Energy goes beyond technology. Energy systems are about people: embedded in political orders and cultural institutions, shaped by social consumers and advocacy coalitions, and interconnected with changing parameters and new local and global markets. An overview and explanation of the three end states have been extracted from the original publication and appear in the first chapter. The second chapter consists of an analysis exploring key drivers of change until 2050, giving special attention to the role of international politics, social dynamics and high-impact ideas. The third chapter explores a case study of Power to Gas to illustrate how the development of new technologies could be shaped by regulatory systems, advocacy coalitions and other functions identified in the ‘technology innovation systems’ model. The fourth chapter explores the case of Energy Valley to understand how local or regional energy systems respond to drivers of change, based on their contextual factors and systems dynamics.
Project goals: Come up with solutions for combined seismic strengthen- ing and sustainability measures based on social boundary conditions Gain insight in homeowners' willingness to move into action for sustainability measures Explore and expand the role of local energy cooperatives in the strengthening operation and sustainability measures. Using a bottom-up approach by co-creation with local stakeholders The project focuses on the social boundary conditions for taking action on sustainability measures in the earthquake region, in particular the willingness of homeowners to invest in their houses and to take action collectively as a community. In cooperation with local energy cooperatives and local stakeholders we will be able to create realistic and achievable solutions based on peoples' needs and preferences.