Service of SURF
© 2025 SURF
Dynamic energy contracts, offering hourly varying day-ahead prices for electricity, create opportunities for a residential Battery Energy Storage System (BESS) to not just optimize the self-consumption of solar energy but also capitalize on price differences. This work examines the financial potential and impact on the self-consumption of a residential BESS that is controlled based on these dynamic energy prices for PV-equipped households in the Netherlands, where this novel type of contract is available. Currently, due to the Dutch Net Metering arrangement (NM) for PV panels, there is no financial incentive to increase self-consumption, but policy shifts are debated, affecting the potential profitability of a BESS. In the current situation, the recently proposed NM phase-out and the general case without NM are studied using linear programming to derive optimal control strategies for these scenarios. These are used to assess BESS profitability in the latter cases combined with 15 min smart meter data of 225 Dutch households to study variations in profitability between households. It follows that these variations are linked to annual electricity demand and feed-in pre-BESS-installation. A residential BESS that is controlled based on day-ahead prices is currently not generally profitable under any of these circumstances: Under NM, the maximum possible annual yield for a 5 kWh/3.68 kW BESS with day-ahead prices as in 2023 is EUR 190, while in the absence of NM, the annual yield per household ranges from EUR 93 to EUR 300. The proposed NM phase-out limits the BESS’s profitability compared to the removal of NM.
The Vulkan real estate site in Oslo is owned by Aspelin Ramm, and includes one of the largest parking garages used for EV charging in Europe. EV charging (both AC and DC) is managed for now predominately for costs reasons but also with relevance at further EV penetration level in this car parking location (mixed EV and ICE vehicles). This neighbourhood scale SEEV4-City operational pilot (OP) has 50 22 kW flexible AC chargers with two sockets each and two DC chargers of 50 kW with both ChaDeMo and CCS outlets. All EV chargers now have a smart control (SC) and Vehicle-to-Grid (V2G) functionality (though the latter may not be in place fully for DC chargers, as they may not be fully connected to the remote back-office system of the EV charging systems operator). A Lithium-ion Battery Energy Stationary Storage System (BESS) with a capacity of 50 kWh is pre-programmed to reduce the energy power peaks of the electric vehicle (EV) charging infrastructure and charges at other times from the central grid (which has a generation mix of 98% from hydro-electric power, and in the region covering Oslo also 1% from wind). The inverter used in the BESS is rated at 50 kW, and is also controlled to perform phase balancing of the 3-phase supply system.
SEEV4-City is an innovation project funded by the European Union Interreg North Sea Region Programme. Its main objective is to demonstrate smart electric mobility and integration of renewable energy solutions and share the learnings gained. The project reports on the results of six Operational Pilots (OPs) which have different scales and are located in five different cities in four different countries in the North Sea Region.Loughborough OP (United Kingdom) is the smallest pilot, being a household with a bi-directional EV charging unit for the Nissan Leaf, a stationary battery, and a PV system. In the Kortrijk OP (Belgium), a battery system and a bi-directional charging unit for the delivery van (as well as a smart charging station for ebikes) were added to the energy system. In Leicester (United Kingdom), five unidirectional charging units were to be accompanied by four bi-directional charging units. The Johan Cruyff Arena OP is a larger pilot in Amsterdam, with a 2.8 MWh (partly) second life stationary battery storage for Frequency Control Regulation services and back-up power, 14 fast chargers and one bi-directional charger. Integrated into the existing energy system is a 1 MW PV system that is already installed on the roof. In the Oslo OP, 102 chargers were installed, of which two are fast chargers. A stationary battery energy storage system (BESS) supports the charging infrastructure and is used for peak shaving. The FlexPower OP in Amsterdam is the largest OP with over 900 EV charging outlets across the city, providing smart charging capable of reducing the energy peak demand in the evening.Before the start of the project, three Key Performance Indicators (KPIs) were determined:A. Estimated CO2 reductionB. Estimated increase in energy autonomyC. Estimated Savings from Grid Investment Deferral