Service of SURF
© 2025 SURF
During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach and player perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery. Purpose: To determine match exertion and subsequent recovery and to investigate the extent to which the coach is able to estimate players’ match exertion and recovery. Methods: Rating of perceived exertion (RPE) and total quality of recovery (TQR) of 14 professional basketball players (age 26.7 ± 3.8 y, height 197.2 ± 9.1 cm, weight 100.3 ± 15.2 kg, body fat 10.3% ± 3.6%) were compared with observations of the coach. During an in-season phase of 15 matches within 6 wk, players gave RPEs after each match. TQR scores were filled out before the first training session after the match. The coach rated observed exertion (ROE) and recovery (TQ-OR) of the players. Results: RPE was lower than ROE (15.6 ± 2.3 and 16.1 ± 1.4; P = .029). Furthermore, TQR was lower than TQ-OR (12.7 ± 3.0 and 15.3 ± 1.3; P < .001). Correlations between coach- and player-perceived exertion and recovery were r = .25 and r = .21, respectively. For recovery within 1 d the correlation was r = .68, but for recovery after 1–2 d no association existed. Conclusion: Players perceive match exertion as hard to very hard and subsequent recovery reasonable. The coach overestimates match exertion and underestimates degree of recovery. Correspondence between coach and players is thus not optimal. This mismatch potentially leads to inadequate planning of training sessions and decreases in performance during fixture congestion in basketball.
Aim and method: To examine in obese people the potential effectiveness of a six-week, two times weekly aquajogging program on body composition, fitness, health-related quality of life and exercise beliefs. Fifteen otherwise healthy obese persons participated in a pilot study. Results: Total fat mass and waist circumference decreased 1.4 kg (p = .03) and 3.1 cm (p = .005) respectively. The distance in the Six-Minute Walk Test increased 41 meters (p = .001). Three scales of the Impact of Weight on Quality of Life-Lite questionnaire improved: physical function (p = .008), self-esteem (p = .004), and public distress (p = .04). Increased perceived exercise benefits (p = .02) and decreased embarrassment (p = .03) were observed. Conclusions: Aquajogging was associated with reduced body fat and waist circumference, and improved aerobic fitness and quality of life. These findings suggest the usefulness of conducting a randomized controlled trial with long-term outcome assessments.
Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person’s training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers. Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol. Methods: After determining individual maximum workloads, 15 healthy male participants (20–35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% Wmax in a hydrated and a mildly dehydrated state, 50% Wmax and intermittent 85/55% Wmax in blocks of 2 min. Perceived exertion was monitored using the Borg’ Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction. Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% Wmax and intermittent exercise i.e., 55/85% Wmax were more pronounced compared to exercise at 50% Wmax. Conclusion: High (70 and 55/85% Wmax) and moderate (50% Wmax) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% Wmax shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
Trainers/coaches van sporttalenten hebben een complexe taak. Sporttalenten moeten hard trainen om de volgende stap te maken in hun sportcarrière of om de aansluiting bij de top te halen. Complexe taken waarmee de trainer te maken krijgt zijn onder andere: het vinden van de juiste balans tussen techniek, tactiek, mentale en andere trainbare factoren; stellen van grenzen aan fysieke en mentale vermogen van sporters; afstemmen op pieken in groei, lichamelijke en mentale ontwikkeling; bepalen van trainingsbelasting in relatie tot (individuele) belastbaarheid; afstemmingsproblemen tussen studie, sport en privéleven. Het risico van een disbalans tussen belasting en belastbaarheid is continu aanwezig met alle negatieve gevolgen van dien. Hierbij valt te denken aan sportblessures, niet optimaal presteren als gevolg van over- of ondertraining of drop out. Om goede sturing te kunnen geven aan dit proces, monitoren veel trainers de individuele belasting en belastbaarheid van hun sporters. Echter ontbreekt het hen aan de kennis, knowhow en tijd om de verzamelde data te verwerken, te interpreteren en om te zetten naar onderbouwde trainingsaanpassingen. Deze handelingsverlegenheid van trainers/coaches is vertaald naar de volgende onderzoeksvraag die centraal staat in het huidige RAAK-project: Hoe kunnen trainers/coaches beter toegerust worden om een optimale balans tussen individuele belasting en belastbaarheid van sporttalenten te realiseren met gebruikmaking van feedback van trainingsdata en trainingssturing. In dit project gaan we, mede op basis van input van trainers/coaches, een scholing ontwikkelen ter bevordering van trainingssturing. Parallel hieraan wordt een feedback dashboard ontwikkeld (Coach in Control dashboard) dat data van individuele sporter geautomatiseerd en betekenisvol rapporteert, visualiseert en beschikbaar maakt voor trainers/coaches. Dit gebeurt in de context van de cyclische sporten waarbij de casus plaatsvindt binnen het langebaanschaatsen en shorttrack. De trainers/coaches worden doorlopend actief betrokken bij de ontwikkeling en het testen van prototypes van de scholing (blended) en het feedback dashboard.