Service of SURF
© 2025 SURF
Objective: To examine the prevalence of sarcopenia and its association with protein intake in men and women in a multi-ethnic population. Design: We used cross-sectional data from the HELIUS (Healthy Life in an Urban Setting) study, which includes nearly 25,000 participants (aged 18–70 years) of Dutch, South-Asian Surinamese, African Surinamese, Turkish, Moroccan, and Ghanaian ethnic origin. For the current study, we included 5161 individuals aged 55 years and older. Sarcopenia was defined according to the EWGSOP2. In a subsample (N = 1371), protein intake was measured using ethnic-specific Food Frequency Questionnaires. Descriptive analyses were performed to study sarcopenia prevalence across ethnic groups in men and women, and logistic regression analyses were used to study associations between protein intake and sarcopenia. Results: Sarcopenia prevalence was found to be sex- and ethnic-specific, varying from 29.8% in Turkish to 61.3% in South-Asian Surinamese men and ranging from 2.4% in Turkish up to 30.5% in South-Asian Surinamese women. Higher protein intake was associated with a 4% lower odds of sarcopenia in the subsample (OR = 0.96, 95%-CI: 0.92–0.99) and across ethnic groups, being only significant in the South-Asian Surinamese group. Conclusion: Ethnic differences in the prevalence of sarcopenia and its association with protein intake suggest the need to target specific ethnic groups for prevention or treatment of sarcopenia.
LINK
from the article: "Abstract: The oral mucosa is the first immune tissue that encounters allergens upon ingestion of food. We hypothesized that the bio-accessibility of allergens at this stage may be a key determinant for sensitization. Light roasted peanut flour was suspended at various pH in buffers mimicking saliva. Protein concentrations and allergens profiles were determined in the supernatants. Peanut protein solubility was poor in the pH range between 3 and 6, while at a low pH (1.5) and at moderately high pHs (>8), it increased. In the pH range of saliva, between 6.5 and 8.5, the allergens Ara h2 and Ara h6 were readily released, whereas Ara h1 and Ara h3 were poorly released. Increasing the pH from 6.5 to 8.5 slightly increased the release of Ara h1 and Ara h3, but the recovery remained low (approximately 20%) compared to that of Ara h2 and Ara h6 (approximately 100% and 65%, respectively). This remarkable difference in the extraction kinetics suggests that Ara h2 and Ara h6 are the first allergens an individual is exposed to upon ingestion of peanut-containing food. We conclude that the peanut allergens Ara h2 and Ara h6 are quickly bio-accessible in the mouth, potentially explaining their extraordinary allergenicity."
LINK