Service of SURF
© 2025 SURF
Many health education programs use progress tests to evaluate students’ progress in learning and to identify possible gaps in the curricula. The tests are typically longitudinal and feedback-oriented. Although many benefits of the progress test have been described in the literature, we argue that the acclaimed facilitation of deeper learning and better retention of knowledge appear questionable. We therefore propose an innovative way of presenting both the test itself and the study process for the test: a real-time-strategy game with in-game challenges, both individual and in teams.
A substantial part of graduate education in veterinary medicine is spent in clinical practice. During the clinical experiential phase, it is difficult to monitor students' actual knowledge development: they build individual records of experiences based on the cases they have to deal with, while mainly focusing on knowledge that is of direct, clinical relevance to them. As a result, students' knowledge bases may differ to such a degree that a single test alone may not be able to provide an adequate reflection of progress made. In these circumstances, progress testing, which is a method of longitudinal assessment independent of the curricular structure, may offer a viable solution. The purpose of this study, therefore, was to determine the extent to which progress tests (PT) can be used to monitor progress in knowledge development at a graduate level in veterinary medical education. With a 6-month interval, we administered two tests to students based on the Maastricht Progress Test format that covered a large variety of veterinary topics. Consequently, we analyzed students' progress in knowledge development. Based on a substantive appraisal of the questions and analysis of the test results, we concluded that the tests met the measurement criteria. They appeared sensitive enough to gauge the progress made and were appreciated by the students. Hence, in spite of the differences within the whole graduate group, the PT format can be used to monitor students' knowledge development.
Formula scoring (FS) is the use of a don't know option (DKO) with subtraction of points for wrong answers. Its effect on construct validity and reliability of progress test scores, is subject of discussion. Choosing a DKO may not only be affected by knowledge level, but also by risk taking tendency, and may thus introduce construct-irrelevant variance into the knowledge measurement. On the other hand, FS may result in more reliable test scores. To evaluate the impact of FS on construct validity and reliability of progress test scores, a progress test for radiology residents was divided into two tests of 100 parallel items (A and B). Each test had a FS and a number-right (NR) version, A-FS, B-FS, A-NR, and B-NR. Participants (337) were randomly divided into two groups. One group took test A-FS followed by B-NR, and the second group test B-FS followed by A-NR. Evidence for impaired construct validity was sought in a hierarchical regression analysis by investigating how much of the participants' FS-score variance was explained by the DKO-score, compared to the contribution of the knowledge level (NR-score), while controlling for Group, Gender, and Training length. Cronbach's alpha was used to estimate NR and FS-score reliability per year group. NR score was found to explain 27 % of the variance of FS [F(1,332) = 219.2, p < 0.0005], DKO-score, and the interaction of DKO and Gender were found to explain 8 % [F(2,330) = 41.5, p < 0.0005], and the interaction of DKO and NR 1.6 % [F(1,329) = 16.6, p < 0.0005], supporting our hypothesis that FS introduces construct-irrelevant variance into the knowledge measurement. However, NR-scores showed considerably lower reliabilities than FS-scores (mean year-test group Cronbach's alphas were 0.62 and 0.74, respectively). Decisions about FS with progress tests should be a careful trade-off between systematic and random measurement error.
Mode heeft een cruciale functie in de samenleving: zij maakt diversiteit en inclusiviteit mogelijk en is een middel voor individuen om zich uit te drukken. Desalniettemin is mode ook een raadsel op het gebied van duurzaamheid, zowel aan de sociale als aan de milieukant. Er bestaan echter alternatieven voor de huidige praktijken in de mode. Dit project heeft tot doel de ontwikkeling van een van die initiatieven te ondersteunen. In samenwerking met twee Nederlandse MKB bedrijven in de mode-industrie, willen we een of meer business modellen co-designen voor het vermarkten van circulair ontworpen laser geprinte T-shirts. Door lasertechnologie te introduceren in plaats van traditionele inktopties, kunnen de T- shirts hun CO2 voetafdruk verder verkleinen en een verstandig alternatief zijn voor individuen, die op zoek zijn naar duurzame modekeuzes. Maar hoewel de technologische haalbaarheid vaststaat, vereist het vermarkten sterke, schaalbare, bedrijfsmodellen. Via een haalbaarheidsstudie willen we dergelijke businessmodellen ontwikkelen en de commercialisering van deze producten ondersteunen. Wij zijn van plan de reacties van de consument op een dergelijke innovatie te bestuderen, evenals de belemmeringen en stimulansen vanuit het oogpunt van de consument, en de inkoop-, toeleveringsketen- en financiële kwesties die kunnen voortvloeien uit de schaalbaarheid van een potentieel bedrijfsmodel. Om praktische relevantie voor de bredere industrie te verzekeren, streven we ernaar om de resultaten te presenteren op evenementen georganiseerd door een van de consortiumpartners (in 2023), als ook om een teaching case en een wetenschappelijk artikel te ontwikkelen op basis van de resultaten van het project.
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.