Service of SURF
© 2025 SURF
The Amsterdam University of Applied Sciences started a research and education group on Applied Quantum Computing at September 1st 2020. This group has a focus on Quantum Computing and Quantum Sensing. Quantum Computing is done together with the Computer Science program and Quantum Sensing with the new Technical Physics program which will start September 1st 2021. The group is involved in educational efforts to create a general awareness of Quantum Computing under the umbrella of the innovation hub Quantum.Amsterdam. In February 2021 the group starts a minor Applied Quantum Computing. Students learn how to program quantum algorithms and together with companies such as Capgemini, Qu & Co and SURFsara engage in projects solving real problems.
Objectives: Promoting unstructured outside play is a promising vehicle to increase children’s physical activity (PA). This study investigates if factors of the social environment moderate the relationship between the perceived physical environment and outside play. Study design: 1875 parents from the KOALA Birth Cohort Study reported on their child’s outside play around age five years, and 1516 parents around age seven years. Linear mixed model analyses were performed to evaluate (moderating) relationships among factors of the social environment (parenting influences and social capital), the perceived physical environment, and outside play at age five and seven. Season was entered as a random factor in these analyses. Results: Accessibility of PA facilities, positive parental attitude towards PA and social capital were associated with more outside play, while parental concern and restriction of screen time were related with less outside play. We found two significant interactions; both involving parent perceived responsibility towards child PA participation. Conclusion: Although we found a limited number of interactions, this study demonstrated that the impact of the perceived physical environment may differ across levels of parent responsibility.
MULTIFILE
The potential of a ‘data-driven life’, together with the realization of Weiser’s vision of ‘the disappearing computer’ have been embraced by many. However, the increasing invisibility, virtuality and complexity of data systems also come with a variety of concerns, such as issues of sensemaking, ownership, representation and control. Although data and technology is all around us, its virtual and invisible nature, thereby its lack of material and tangible forms has implications on the way data systems are (mis) used, understood, experienced and perceived. This paper presents craft-based approaches for physical sense making –widely ranging from physical artefacts to show and hide from monitoring, to crafting data physicalizations for critical thinking, communication and creativity. In doing so, this paper discusses how crafting physical forms can be used as a way to grasp and understand ‘invisible’ data systems.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.