Chapter 6 in Consumption culture in Europe. The chapter focuses on cultural differences in consumption across Europe and describes general attitudes towards consumption and brands, the significance of shopping, and how these are linked to the motives of consumption of alcoholic and non-alcoholic drinks. These topics have been analysed using the Hofstede dimensions, and the evaluation also considers regional differences within the European Union. The main objective of this research is to attempt to understand consumption patterns and national cultural dimensions, general consumption values, and what their connections are to alcoholic and non-alcoholic drinking patterns. The main research question is how cultural styles influence consumption styles within Europe. This analysis concluded that some European societies are more adaptable to cross-cultural influence than others in relation to beverage consumption. The authors’ findings suggest that the cultural dimensions identified by Hofstede supported the understanding of cultural differences related to purchasing, brands and beverage consumption both at national and individual levels. However, there is an overlap between some countries in their drinking behaviour, which supports the claim that existing cultural patterns cannot fully explain the new beverage trends, especially in alcohol consumption. This indicates the necessity of a shift toward new dimensions with regard to beverage consumption and/or eventually consumer behaviour.
LINK
Chapter 6 in Consumption culture in Europe. The chapter focuses on cultural differences in consumption across Europe and describes general attitudes towards consumption and brands, the significance of shopping, and how these are linked to the motives of consumption of alcoholic and non-alcoholic drinks. These topics have been analysed using the Hofstede dimensions, and the evaluation also considers regional differences within the European Union. The main objective of this research is to attempt to understand consumption patterns and national cultural dimensions, general consumption values, and what their connections are to alcoholic and non-alcoholic drinking patterns. The main research question is how cultural styles influence consumption styles within Europe. This analysis concluded that some European societies are more adaptable to cross-cultural influence than others in relation to beverage consumption. The authors’ findings suggest that the cultural dimensions identified by Hofstede supported the understanding of cultural differences related to purchasing, brands and beverage consumption both at national and individual levels. However, there is an overlap between some countries in their drinking behaviour, which supports the claim that existing cultural patterns cannot fully explain the new beverage trends, especially in alcohol consumption. This indicates the necessity of a shift toward new dimensions with regard to beverage consumption and/or eventually consumer behaviour.
LINK
Communities worldwide are critically re-examining their seasonal cultures and calendars. As cultural frameworks, seasons have long patterned community life and provided repertoires for living by annual rhythms. In a chaotic world, the seasons - winter, the monsoon and so on - can feel like stable cultural landmarks for reckoning time and orienting our communities. Seasons are rooted in our pasts and reproduced in our present. They act as schemes for synchronising community activities and professional practices, and as symbol systems for interpreting what happens in the world. But on closer inspection, seasons can be unstable and unreliable. Their meanings can change over time. Seasonal cultures evolve with environments and communities’ worldviews, values, technologies and practices, affecting how people perceive seasonal patterns and behave accordingly. Calendars are contested, especially now. Communities today find themselves in a moment of accelerated and intersecting changes - from climate to social, political, and technological - that are destabilizing seasonal cultures. How they reorient themselves to shifting patterns may affect whether seasonal rhythms serve as resources, or lead people down maladaptive pathways. A focus on seasonal cultures builds on multi-disciplinary work. The social sciences, from anthropology to sociology, have long studied how seasons order people’s sense of time, social life, relationship to the environment, and politics. In the humanities, seasons play an important role in literature, art, archaeology and history. This book advances scholarship in these fields, and enriches it with extrascientific insights from practice, to open up exiting new directions in climate adaptation. Critically questions traditional, often-static notions of seasons; re-interpreting them as more flexible, cultural frameworks adapting to changes to our societies and environments.
LINK
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.