Service of SURF
© 2025 SURF
This study theorizes on the sociomateriality of food in authority-building processes of partial organizations by exploring alternative food networks (AFNs). Through the construction of arenas for food provisioning, AFNs represent grassroots collectives that deliberately differentiate their practices from mainstream forms of food provisioning. Based on a sequential mixed-methods analysis of 24 AFNs, where an inductive chronological analysis is followed by a qualitative comparative analysis (QCA), we found that the entanglements between participants’ food provisioning practices and food itself shape how authority emerges in AFNs. Food generates biological, physiological and social struggles for AFN participants who, in turn, respond by embracing or avoiding them. As an outcome, most AFNs tend to bureaucratize over time according to four identified patterns while a few idiosyncratically build a more shared basis of authority. We conclude that the sociomateriality of food plays an important yet indirect role in understanding why and how food provisioning arenas re-organize and forge their forms of authority over time. Pascucci, S., Dentoni, D., Clements, J., Poldner, K., & Gartner, W. B. (2021). Forging Forms of Authority through the Sociomateriality of Food in Partial Organizations. Organization Studies, 42(2), 301-326. https://doi.org/10.1177/0170840620980232
This report is entitled ‘Business Trends: Implications for Work and the Organization’. It includes the preliminary results of the study based on developments in the economic domain and the implications for work and the organization, carried out by the Business Research Centre (BRC) at Inholland University of Applied Science.
High Performance Organization (HPO) characteristics indicate why an organization is able to achieve significantly better results than other organizations and these characteristics can facilitate associations to optimize employees’ work outcomes. The independent professional (IP) is an increasingly occurring phenomenon in the labor market that fulfils an organizations’ need for flexibility in knowledge productivity. This study focuses on the contribution of HPO characteristics to the knowledge productivity of IP's. It was conducted among managers and HRM professionals in various Dutch knowledge-intensive organizations that frequently enlist the services of IPs. This study found a number of HPO attributes that appeared to contribute to the IPs' knowledge productivity, namely the quality of management, an open and actionfocused organizational culture, and continual improvement and innovation. We will use these results to look ahead and consider the future consequences for professional practice. Managers and HRM professionals should strive to contribute to the incorporation of these characteristics within the organization in order to safeguard and enhance knowledge productivity of independent professionals.
Even though considerable amounts of valuable wood are collected at waste collection sites, most of it remains unused and is burned: it is too labor-intensive to sort, process and upcycle useable parts. Valuable wood thus becomes worthless waste, against circular economy principles. In MoBot-Wood, waste collection organizations HVC and the municipality of Amsterdam, together with Rolan Robotics, Metabolic and AUAS investigate how waste wood can be sorted and processed at waste collection sites, using an easy-to-deploy robotic solution. In various preceding and on-going projects, AUAS and partners are exploring circular wood intake, sorting and processing using industrial robots, including processes like machine vision, 3D scanning, sawing, and milling. These projects show that harvesting waste wood is a challenging matter. Generally, the wood is only partially useable due to the presence of metal, excessive paint, deterioration by fungi and water, or other contamination and damages. To harvest useable wood thus requires intensive sorting and processing. The solution of transporting all the waste wood from collection sites to a central processing station might be too expensive and have a negative environmental impact. Considering that much of collected wood will need to be discarded, often no wood is harvested at all, due to the costs for collection and shipping. Speaking with several partners in related projects, the idea emerged to develop a mobile robotic station, which can be (temporarily) deployed at waste collection sites, to intake, sort and process wood for upcycling. In MoBot-Wood, research entails the design of such station, its deployment conditions, and a general assessment of its potential impact. The project investigates robotic sorting and processing on location as a new approach to increase the amount of valuable, useable wood harvested at waste collection sites, by avoiding material transport and reducing the volume of remaining waste.