Non-invasive, rapid, on-site detection and identification of body fluids is highly desired in forensic investigations. The use of fluorescence-based methods for body fluid identification, have so far remain relatively unexplored. As such, the fluorescent properties of semen, serum, urine, saliva and fingermarks over time were investigated, by means of fluorescence spectroscopy, to identify specific fluorescent signatures for body fluid identification. The samples were excited at 81 different excitation wavelengths ranging from 200 to 600 nm and for each excitation wavelength the emission was recorded between 220 and 700 nm. Subsequently, the total emitted fluorescence intensities of specific fluorescent signatures in the UV–visible range were summed and principal component analysis was performed to cluster the body fluids. Three combinations of four principal components allowed specific clustering of the body fluids, except for fingermarks. Blind testing showed that 71.4% of the unknown samples could be correctly identified. This pilot study shows that the fluorescent behavior of ageing body fluids can be used as a new non-invasive tool for body fluid identification, which can improve the current guidelines for the detection of body fluids in forensic practice and provide the robustness of methods that rely on fluorescence.
MULTIFILE
Non-invasive, rapid, on-site detection and identification of body fluids is highly desired in forensic investigations. The use of fluorescence-based methods for body fluid identification, have so far remain relatively unexplored. As such, the fluorescent properties of semen, serum, urine, saliva and fingermarks over time were investigated, by means of fluorescence spectroscopy, to identify specific fluorescent signatures for body fluid identification. The samples were excited at 81 different excitation wavelengths ranging from 200 to 600 nm and for each excitation wavelength the emission was recorded between 220 and 700 nm. Subsequently, the total emitted fluorescence intensities of specific fluorescent signatures in the UV–visible range were summed and principal component analysis was performed to cluster the body fluids. Three combinations of four principal components allowed specific clustering of the body fluids, except for fingermarks. Blind testing showed that 71.4% of the unknown samples could be correctly identified. This pilot study shows that the fluorescent behavior of ageing body fluids can be used as a new non-invasive tool for body fluid identification, which can improve the current guidelines for the detection of body fluids in forensic practice and provide the robustness of methods that rely on fluorescence.
MULTIFILE
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.