Service of SURF
© 2025 SURF
Physical inactivity has become a major public health concern and, consequently, the awareness of striving for a healthy lifestyle has increased. As a result, the popularity of recreational sports, such as running, has increased. Running is known for its low threshold to start and its attractiveness for a heterogeneous group of people. Yet, one can still observe high drop-out rates among (novice) runners. To understand the reasons for drop-out as perceived by runners, we investigate potential reasons to quit running among short distance runners (5 km and 10 km) (n = 898). Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS16). Binary logistic regressions were used to investigate the relation between reasons to quit running and different variables like socio-demographic variables, running habits and attitudes, interests, and opinions (AIOs) on running. Our results indicate that, not only people of different gender and age show significant differences in perceived reasons to quit running, also running habits, (e.g., running context and frequency) and AIOs are related to perceived reasons to quit running too. With insights into these related variables, potential drop-out reasons could help health professionals in understanding and lowering drop-out rates among recreational runners
Among runners, there is a high drop-out rate due to injuries and loss of motivation. These runners often lack personalized guidance and support. While there is much potential for sports apps to act as (e-)coaches to help these runners to avoid injuries, set goals, and maintain good intentions, most available running apps primarily focus on persuasive design features like monitoring, they offer few or no features that support personalized guidance (e.g., personalized training schemes). Therefore, we give a detailed description of the working mechanism of Inspirun e-Coach app and on how this app uses a personalized coaching approach with automatic adaptation of training schemes based on biofeedback and GPS-data. We also share insights into how end-users experience this working mechanism. The primary conclusion of this study is that the working mechanism (if provided with accurate data) automatically adapts training sessions to the runners’ physical workload and stimulates runners’ goal perception, motivation, and experienced personalization. With this mechanism, we attempted to make optimal use of the potential of wearable technology to support the large group of novice or less experienced runners and that by providing insight in our working mechanisms, it can be applied in other technologies, wearables, and types of sports.