Service of SURF
© 2025 SURF
The recent success of Machine Learning encouraged research using artificial neural networks (NNs) in computer graphics. A good example is the bidirectional texture function (BTF), a data-driven representation of surface materials that can encapsulate complex behaviors that would otherwise be too expensive to calculate for real-time applications, such as self-shadowing and interreflections. We propose two changes to the state-of-the-art using neural networks for BTFs, specifically NeuMIP. These changes, suggested by recent work in neural scene representation and rendering, aim to improve baseline quality, memory footprint, and performance. We conduct an ablation study to evaluate the impact of each change. We test both synthetic and real data, and provide a working implementation within the Mitsuba 2 rendering framework. Our results show that our method outperforms the baseline in all these metrics and that neural BTF is part of the broader field of neural scene representation. Project website: https://traverse-research.github.io/NeuBTF/.
From the article: Abstract: An overview of neural network architectures is presented. Some of these architectures have been created in recent years, whereas others originate from many decades ago. Apart from providing a practical tool for comparing deep learning models, the Neural Network Zoo also uncovers a taxonomy of network architectures, their chronology, and traces back lineages and inspirations for these neural information processing systems.
We present a novel architecture for an AI system that allows a priori knowledge to combine with deep learning. In traditional neural networks, all available data is pooled at the input layer. Our alternative neural network is constructed so that partial representations (invariants) are learned in the intermediate layers, which can then be combined with a priori knowledge or with other predictive analyses of the same data. This leads to smaller training datasets due to more efficient learning. In addition, because this architecture allows inclusion of a priori knowledge and interpretable predictive models, the interpretability of the entire system increases while the data can still be used in a black box neural network. Our system makes use of networks of neurons rather than single neurons to enable the representation of approximations (invariants) of the output.
LINK