Service of SURF
© 2025 SURF
Veel bedrijven stemmen hun communicatie en interactie met de consument af door te segmenteren op kanaalgebruik. In deze studie tonen wij aan dat een focus op kanalen maar zeer beperkt bruikbaar is. Deze beperking is een logisch gevolg van het feit dat de meeste consumenten meerdere kanalen gebruiken, het online kanaal ondertussen veel verschillende vormen kent en kanalen steeds meer integreren. Het vaak gemaakte onderscheid online en offline verliest hierdoor zijn relevantie. In deze studie lichten wij toe hoe wij verschillende navigatie-strategieën hebben geïdentificeerd die aangeven hoe consumenten hun weg vinden in het kanalenlandschap in de verschillende fasen rondom een aankoop. Door kanaalgebruik te verklaren vanuit deze navigatie-strategieën ontstaat een stabiel en eenduidige model dat organisaties zal helpen een effectieve multi-channel strategie te formuleren
1e en 2e alinea column: Het is vakantie. De 'Tomtom', ik bedoel hier dan navigatie systemen mee en niet letterlijk producten van het gelijknamige bedrijf, zal dus best veel gebruikt worden in de vele buitenlanden die Nederlanders per auto en fiets plegen te bezoeken. De TomTom is een eigenaardig ding. Aan de ene kant wijst ie de weg. En dat is gemakkelijk. Aan de andere kant wijst ie doorgaans iedereen dezelfde weg met als gevolg dat één weg heel druk is en de alternatieve routes naar het zelfde reisdoel heel leeg. De tomtom creëert daarmee een bias om met zijn allen dezelfde oplossingen langs de zelfde wegen te zoeken. TomTom live verandert daar niets aan.
LINK
In het project “ADVICE: Advanced Driver Vehicle Interface in a Complex Environment” zijn belangrijke onderzoeksresultaten geboekt op het gebied van het schatten van de toestand en werklast van een voertuigbestuurder om hiermee systemen die informatie geven aan de bestuurder adaptief te maken om zo de veiligheid te verhogen. Een voorbeeld is om minder belangrijke informatie van een navigatiesysteem te onderdrukken, zolang de bestuurder een hoge werklast ervaart voor het autorijden en/of belangrijke informatie juist duidelijker weer te geven. Dit leidt tot een real-time werklast schatter die geografische informatie meeneemt, geavaleerd in zowel een rijsimulator als op de weg. In de ontwikkeling naar automatisch rijden is de veranderende rol van de bestuurder een belangrijk (veiligheids) onderwerp, welke sterk gerelateerd is aan de werklast van de bestuurder. Indien rijtaken meer geautomatiseerd worden, wijzigt de rol van actieve bestuurder meer naar supervisie van de rijtaken, maar tevens met de eis om snel en gericht in te grijpen indien de situatie dit vereist. Zowel deze supervisie als interventietaak zijn geen eenvoudige taken met onderling een sterk verschillende werklast (respectievelijk lage en (zeer) hoge werklast). Of een goede combinatie inclusief snelle overgangen tussen deze twee hoofdtaken veilig mogelijk is voor een bestuurder en hoe dit dan het beste ondersteund kan worden, is een belangrijk onderwerp van huidig onderzoek. De ontwikkeling naar autonoom rijden verandert niet alleen de rol van de bestuurder, maar zal ook de eisen aan het rijgedrag van het voertuig beïnvloeden, de voertuigdynamica. Voor de actieve bestuurder kunnen snelle voertuigreacties op bestuurdersinput belangrijk zijn, zeker voor een ‘sportief’ rijdende bestuurder. Indien dit voertuig ook automatische rijtaken moet uitvoeren, kan juist een meer gelijkmatig rijgedrag gewenst zijn, zodat de bestuurder ook andere taken kan uitvoeren. Dit stelt eisen aan vertaling van (automatische) input naar voertuigreactie en aan de voertuigdynamica. Mogelijk wil zelfs een sportieve bestuurder een meer comfortabel voertuiggedrag tijdens automatisch rijden. Eveneens voor deze twee voertuigtoestanden, menselijke of automatische besturing, moet gezocht worden naar een goede combinatie inclusief (veilige) overgangen tussen deze twee toestanden. Hierbij speelt de werklast en toestand van de bestuurder een doorslaggevende rol. In de geschetste ontwikkelingen in automatisch rijden kunnen de onderzoeksresultaten van ADVICE een goede ondersteuning bieden. Veel van deze ontwikkelingen worstelen met het schatten van de werklast van de bestuurder als cruciaal (veiligheids) aspect van automatisch rijden. De ADVICE resultaten zijn echter gepresenteerd voor beperkt publiek en gepubliceerd op conferenties, waarvan de artikelen veelal slechts tegen betaling toegankelijk zijn. Daarnaast zijn dergelijke artikelen gelimiteerd in aantal pagina’s waardoor de over te dragen informatie beperkt is. Om een betere doorwerking van ADVICE aan ‘iedereen’ te realiseren en tevens de mogelijkheden hiervan in de toekomst van automatisch rijden te plaatsen, willen wij top-up gebruiken om hierover een artikel te schrijven en dit in een peer-reviewed Open Access tijdschrift online toegankelijk te maken. Hierdoor wordt de informatie voor iedereen, gratis toegankelijk (open access), is de inhoud uitgebreider aan te geven (tijdschriftartikel) en is de inhoud en kwaliteit goed en relevant voor het vakgebied (peer-reviewed).
In onze visie voeren robots autonoom taken uit op de akker. Ze kunnen zaaien, oogsten, onkruid verwijderen, gewassen monitoren en verzorgen. Hierdoor zijn agrariërs minder kostbare tijd kwijt aan basistaken. Ook zijn er met dit soort robots geen (of veel minder) bestrijdingsmiddelen nodig en rijden er geen zware machines meer op het land. Dit leidt tot minder bodemverdichting en daardoor hoeft het land niet (of minder diep) te worden omgeploegd. Naast een enorme besparing op brandstof leidt dit ook tot een betere bodemkwaliteit en worden nieuwe teelten mogelijk. Agrarische robots zijn volop in ontwikkeling. Er zijn echter nog een aantal uitdagingen die opgelost moeten worden. Eén van die uitdagingen is volledig autonome, robuuste en veilige navigatie. De robot moet kunnen rijden zonder een bestuurder. Het AgriNav project: Agricultural Navigation In dit project werkt Saxion samen met drie pioniers op het gebied van agrarische robots in Nederland. Het doel is om een gedegen beeld van oplossingen voor het navigatieprobleem te ontwikkelen. We brengen daarvoor in kaart welke producten en frameworks er zijn en in hoeverre deze direct te gebruiken zijn. Op basis van de bevindingen maken we een afweging of de navigatie oplossing wordt ingekocht of dat deze zelf wordt ontwikkeld, bijvoorbeeld op basis van bestaande open source projecten. Onderdeel van dit KIEM project is het starten van vervolgtrajecten, zoals RAAK-mkb of RAAK-PRO. Impact Het project “AgriNav” geeft de inzet van kleine autonome zelfrijdende robots in de agrarische sector een boost, waardoor er nieuwe en duurzamere landbouw kan ontstaan. Dit past bij de ambitie van Nederland om voorop te lopen op het gebied van technologie voor voedselproductie. Door het project wordt de kennispositie van het consortium versterkt in zowel de topsector HTSM als AgriFood en de NWA routes “Duurzame productie van gezond en veilig voedsel” en “smart industrie”.
De maatschappelijke discussies over de invloed van AI op ons leven tieren welig. De terugkerende vraag is of AI-toepassingen – en dan vooral recommendersystemen – een dreiging of een redding zijn. De impact van het kiezen van een film voor vanavond, met behulp van Netflix' recommendersysteem, is nog beperkt. De impact van datingsites, navigatiesystemen en sociale media – allemaal systemen die met algoritmes informatie filteren of keuzes aanraden – is al groter. De impact van recommendersystemen in bijvoorbeeld de zorg, bij werving en selectie, fraudedetectie, en beoordelingen van hypotheekaanvragen is enorm, zowel op individueel als op maatschappelijk niveau. Het is daarom urgent dat juist recommendersystemen volgens de waarden van Responsible AI ontworpen worden: veilig, eerlijk, betrouwbaar, inclusief, transparant en controleerbaar.Om op een goede manier Responsible AI te ontwerpen moeten technische, contextuele én interactievraagstukken worden opgelost. Op het technische en maatschappelijke niveau is al veel vooruitgang geboekt, respectievelijk door onderzoek naar algoritmen die waarden als inclusiviteit in hun berekening meenemen, en door de ontwikkeling van wettelijke kaders. Over implementatie op interactieniveau bestaat daarentegen nog weinig concrete kennis. Bekend is dat gebruikers die interactiemogelijkheden hebben om een algoritme bij te sturen of aan te vullen, meer transparantie en betrouwbaarheid ervaren. Echter, slecht ontworpen interactiemogelijkheden, of een mismatch tussen interactie en context kosten juist tijd, veroorzaken mentale overbelasting, frustratie, en een gevoel van incompetentie. Ze verhullen eerder dan dat ze tot transparantie leiden.Het ontbreekt ontwerpers van interfaces (UX/UI designers) aan systematische concrete kennis over deze interactiemogelijkheden, hun toepasbaarheid, en de ethische grenzen. Dat beperkt hun mogelijkheid om op interactieniveau aan Responsible AI bij te dragen. Ze willen daarom graag een pattern library van interactiemogelijkheden, geannoteerd met onderzoek over de werking en inzetbaarheid. Dit bestaat nu niet en met dit project willen we een substantiële bijdrage leveren aan de ontwikkeling ervan.