Service of SURF
© 2025 SURF
Many quality aspects of software systems are addressed in the existing literature on software architecture patterns. But the aspect of system administration seems to be a bit overlooked, even though it is an important aspect too. In this work we present three software architecture patterns that, when applied by software architects, support the work of system administrators: PROVIDE AN ADMINISTRATION API, SINGLE FILE LOCATION, and CENTRALIZED SYSTEM LOGGING. PROVIDE AN ADMINISTRATION API should solve problems encountered when trying to automate administration tasks. The SINGLE FILE LOCATION pattern should help system administrators to find the files of an application in one (hierarchical) place. CENTRALIZED SYSTEM LOGGING is useful to prevent coming up with several logging formats and locations. Abstract provided by the authors. Published in PLoP '13: Proceedings of the 20th Conference on Pattern Languages of Programs ACM.
Abstract-Architecture Compliance Checking (ACC) is an approach to verify the conformance of implemented program code to high-level models of architectural design. ACC is used to prevent architectural erosion during the development and evolution of a software system. Static ACC, based on static software analysis techniques, focuses on the modular architecture and especially on rules constraining the modular elements. A semantically rich modular architecture (SRMA) is expressive and may contain modules with different semantics, like layers and subsystems, constrained by rules of different types. To check the conformance to an SRMA, ACC-tools should support the module and rule types used by the architect. This paper presents requirements regarding SRMA support and an inventory of common module and rule types, on which basis eight commercial and non-commercial tools were tested. The test results show large differences between the tools, but all could improve their support of SRMA, what might contribute to the adoption of ACC in practice.
This papers presents some ideas to use so-called software agents as a software representation of a product not only during manufacturing but also during the whole life cycle of the product. Software agents are autonomous entities capable of collecting useful information about products. By their design and capabilities software agents fit well in the concept of ubiquitous computing. We use these agents in our newly developed manufacturing process. This paper discusses further use of agent technology.