Background: The emergence of smartphones and wearable sensor technologies enables easy and unobtrusive monitoring of physiological and psychological data related to an individual’s resilience. Heart rate variability (HRV) is a promising biomarker for resilience based on between-subject population studies, but observational studies that apply a within-subject design and use wearable sensors in order to observe HRV in a naturalistic real-life context are needed. Objective: This study aims to explore whether resting HRV and total sleep time (TST) are indicative and predictive of the within-day accumulation of the negative consequences of stress and mental exhaustion. The tested hypotheses are that demands are positively associated with stress and resting HRV buffers against this association, stress is positively associated with mental exhaustion and resting HRV buffers against this association, stress negatively impacts subsequent-night TST, and previous-evening mental exhaustion negatively impacts resting HRV, while previous-night TST buffers against this association. Methods: In total, 26 interns used consumer-available wearables (Fitbit Charge 2 and Polar H7), a consumer-available smartphone app (Elite HRV), and an ecological momentary assessment smartphone app to collect resilience-related data on resting HRV, TST, and perceived demands, stress, and mental exhaustion on a daily basis for 15 weeks. Results: Multiple linear regression analysis of within-subject standardized data collected on 2379 unique person-days showed that having a high resting HRV buffered against the positive association between demands and stress (hypothesis 1) and between stress and mental exhaustion (hypothesis 2). Stress did not affect TST (hypothesis 3). Finally, mental exhaustion negatively predicted resting HRV in the subsequent morning but TST did not buffer against this (hypothesis 4). Conclusions: To our knowledge, this study provides first evidence that having a low within-subject resting HRV may be both indicative and predictive of the short-term accumulation of the negative effects of stress and mental exhaustion, potentially forming a negative feedback loop. If these findings can be replicated and expanded upon in future studies, they may contribute to the development of automated resilience interventions that monitor daily resting HRV and aim to provide users with an early warning signal when a negative feedback loop forms, to prevent the negative impact of stress on long-term health outcomes.
MULTIFILE
Background: The emergence of smartphones and wearable sensor technologies enables easy and unobtrusive monitoring of physiological and psychological data related to an individual’s resilience. Heart rate variability (HRV) is a promising biomarker for resilience based on between-subject population studies, but observational studies that apply a within-subject design and use wearable sensors in order to observe HRV in a naturalistic real-life context are needed. Objective: This study aims to explore whether resting HRV and total sleep time (TST) are indicative and predictive of the within-day accumulation of the negative consequences of stress and mental exhaustion. The tested hypotheses are that demands are positively associated with stress and resting HRV buffers against this association, stress is positively associated with mental exhaustion and resting HRV buffers against this association, stress negatively impacts subsequent-night TST, and previous-evening mental exhaustion negatively impacts resting HRV, while previous-night TST buffers against this association. Methods: In total, 26 interns used consumer-available wearables (Fitbit Charge 2 and Polar H7), a consumer-available smartphone app (Elite HRV), and an ecological momentary assessment smartphone app to collect resilience-related data on resting HRV, TST, and perceived demands, stress, and mental exhaustion on a daily basis for 15 weeks. Results: Multiple linear regression analysis of within-subject standardized data collected on 2379 unique person-days showed that having a high resting HRV buffered against the positive association between demands and stress (hypothesis 1) and between stress and mental exhaustion (hypothesis 2). Stress did not affect TST (hypothesis 3). Finally, mental exhaustion negatively predicted resting HRV in the subsequent morning but TST did not buffer against this (hypothesis 4). Conclusions: To our knowledge, this study provides first evidence that having a low within-subject resting HRV may be both indicative and predictive of the short-term accumulation of the negative effects of stress and mental exhaustion, potentially forming a negative feedback loop. If these findings can be replicated and expanded upon in future studies, they may contribute to the development of automated resilience interventions that monitor daily resting HRV and aim to provide users with an early warning signal when a negative feedback loop forms, to prevent the negative impact of stress on long-term health outcomes.
MULTIFILE
Purpose: In Amsterdam – the Netherlands – we know that children living in low income households have a lower health status and report lower physical activity levels than their peers in middle- or high-income households. Seven primary schools located in neighborhoods with a low social-economic status are currently developing their own active school using the ‘Creating Active Schools Framework’. This study was conducted to assess the current physical activity and sedentary behavior patterns during and after school of the pupils in these seven primary schools.Methods: In this cross-sectional study, we collect data in seven schools located within an Amsterdam neighborhood with a low social economic status score. Within each school, 4 classes are eligible for participation. Children wear an accelerometer from Monday morning until Friday afternoon to assess physical activity levels. Parents of participating children are asked to complete a questionnaire on baseline characteristics, wellbeing and out of school physical activity behaviors. The mean sedentary time (ST), low physical activity (LPA) time and Moderate to Vigorous physical activity (MVPA) time will be calculated. The association between the outcomes of the accelerometer data and gender and health related outcomes reported by parents will be assessed.Results: The data will be collected between March and May 2023. We will present the average LPA and MVPA during and after school time. The duration of the ST bouts during and after schooltime. And associations between ST, LPA and MVPA and gender and health related outcomes.Conclusions: The results of this study will be used to support local school teams in the development and implementation of local action plans towards a school day that involves less sitting and more physical activity.
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified