Purpose People with dementia (PwD) often present Behavioral and Psychological Symptoms of Dementia, which include agitation, apathy, and wandering amongst others, also known as challenging behaviors (CBs). These CBs worsen the quality of life (QoL) of the PwD and are a major source/reason of (increased) caregiver burden. The intricate nature of the symptoms implies that there is no “one size fits all solution”, and necessitates tailored approaches for both PwDs and caregivers. To timely prevent these behaviors assistive technology can be utilized to guide caregivers by enabling remote monitoring of contextual, environmental, and behavioral parameters, and subsequently alarming nurses on early-stage behavioral changes prior to the presentation of CBs. Eventually, the system should propose an intervention/action to prevent escalation. In turn, improvement in QoL for both caregivers and PwD living in nursing homes (NHs) is expected. In the current project “MOnitoring Onbegrepen Gedrag bij Dementie met sensortechnologie” (MOOD-Sense), we aim to develop such a monitoring system. The strengths of this new monitoring system lie in its ability to align with the individual needs of the PwD, utilization of a combination of wearables and ambient sensors to obtain contextual data, such as location or sound, and predict or monitor CBs individually rather than in groups, thus facilitating person-centered care, based on ontological reasoning. The project is divided into three parts, Toolbox A, B and C. Toolbox A focuses on obtaining insight in which behaviors are challenging according to nurses and how they are described. Previous studies utilize clinical terminology to describe or classify behavior, we aim to employ concrete descriptions of behavior that are observable and independent of clinical terminology, aligning with nurses who are often the first to notice behavior and can be operationalized such that it can also be aligned with sensor data. As a result, an ontology will be developed based on the data such that sensor data can be integrated into the same conceptual information that standardizes the communication in our monitoring system. Toolbox B focuses on translating data coming from various sensors into the concepts expressed in the ontology, and timely communicate situations of interest to the caregivers. In Toolbox C the focus is exploring interventions/actions employed in practice to prevent CBs. Method In Toolbox A we used a qualitative approach to collect descriptions of CBs. For this purpose, we employed focus groups (FGs) with nursing staff who provide daily care to PwD. In Toolbox B pilot studies were conducted. A set of experiments using sensors in NHs were performed. During each pilot, multiple PwD with CBs in NHs were monitored with both ambient and wearables sensors. The pilots were iteratively approached, which means that insights from previous pilot studies were used to improve consecutive pilot studies. Lastly, the elaboration of Toolbox C is ongoing. Results and Discussion Regarding Toolbox A four FGs were conducted during the period from January 2023 to May 2024. Each FG was comprised of four nurses (n = 16). From the FGs we gained insights into behavioral descriptions and the context of CBs. Although data analysis has to be performed yet, there are indications that changes preceding CBs can be observed, such as frowning or clenching fists for agitation or aggression. Further results will be available soon. Regarding Toolbox B a monitoring system, based on sensors, is developed iteratively (see Figure 1) and piloted in three consecutive NHs from January 2021 to December 2023. Each pilot was comprised of two PwD (n = 6). Analysis of sensor data is ongoing.
LINK
This paper describes a participatory design-oriented study of an ambient assisted living system for monitoring the daily activities of elderly residents. The work presented addresses these questions 1) What daily activities the elderly participants like to be monitored, 2) With whom they would want to share this monitored data and 3) How a monitoring system for the elderly should be designed. For this purpose, this paper discusses the study results and participatory design techniques used to exemplify and understand desired ambient-assisted living scenarios and information sharing needs. Particularly, an interactive dollhouse is presented as a method for including the elderly in the design and requirements gathering process for residential monitoring. The study results indicate the importance of exemplifying ambient-assisted living scenarios to involve the elderly and so to increase acceptance and utility of such systems. The preliminary studies presented show that the participants were willing to have most of their daily activities monitored. However, they mostly wanted to keep control over their own data and share this information with medical specialists and particularly not with their fellow elderly neighbours.
MULTIFILE
This paper describes a participatory design-oriented study of an ambient assisted living system for monitoring the daily activities of elderly residents. The work presented addresses these questions 1) What daily activities the elderly participants like to be monitored, 2) With whom they would want to share this monitored data and 3) How a monitoring system for the elderly should be designed. For this purpose, this paper discusses the study results and participatory design techniques used to exemplify and understand desired ambient-assisted living scenarios and information sharing needs. Particularly, an interactive dollhouse is presented as a method for including the elderly in the design and requirements gathering process for residential monitoring. The study results indicate the importance of exemplifying ambient-assisted living scenarios to involve the elderly and so to increase acceptance and utility of such systems. The preliminary studies presented show that the participants were willing to have most of their daily activities monitored. However, they mostly wanted to keep control over their own data and share this information with medical specialists and particularly not with their fellow elderly neighbours.
MULTIFILE
ADAS- Monitor Advanced Driver Assistent Systems (ADAS) worden gezien als een middel om de verkeersveiligheidsstreefdoelstellingen uit het Strategisch Plan Verkeersveiligheid 2030 en de Europese beleidsstukken te behalen. Naast de veelal technische uitdagingen en ontwikkelingen die ADAS momenteel doormaken, wordt in de breedte van de automotive sector benadrukt dat het gebruik en de bekendheid van ADAS bij automobilisten te wensen overlaat waardoor de potentie van ADAS voor de verkeersveiligheid niet optimaal wordt benut. De ADAS alliantie , een samenwerking van meer dan 60 bedrijven, overheden en kennisinstellingen, heeft als doel gesteld het (veilig)gebruik van ADAS met 20% te bevorderen. Echter, ontbreekt actuele informatie met betrekking tot de bekendheid van, het vertrouwen in en het daadwerkelijke gebruik door automobilisten. In dit onderzoek staat de periodieke monitoring van de gebruikersadaptatie centraal waarbij de bekendheid van, de acceptatie, het percentage daadwerkelijk gebruik van ADAS door automobilisten wordt gepresenteerd doormiddel van een (digitaal) dashboard. Een divers samengesteld consortium voert het onderzoek uit en maakt daarbij gebruik van een groter netwerk om de benodigde data te vergaren en voor disseminatie. Het onderzoek bestaat uit een werkpakket waarin de gebruikersadapatie doormiddel van vragenlijstonderzoek wordt vastgesteld en een werkpakket waarin iteratief het concept ontwerp leidt tot een prototype dashboard. Het resultaat van dit onderzoek is een werkend prototype van een ADAS-dashboard. Wanneer het prototype wordt vertaalt naar een definitief ontwerp, blijft het tot vijf jaar na presentatie geüpdatet met recente data. Het ADAS-dashboard bevat een visuele en digitale weergave van het onderzoek naar het gebruikersperspectief en wordt indien gewenst uitgebreid met andere relevante data. Wanneer het ADAS dashboard is gerealiseerd, kan het zowel voor beleidsmakers en bedrijven ingezet worden om keuzes te onderbouwen of om ontwikkelingen op te baseren als ook om communicatiestrategieën te ontwikkelen waarmee het gebruik wordt bevorderd.
In de schoonmaakbranche is de werkdruk hoog . Hierdoor worden gebouwen dagelijks niet goed genoeg schoongemaakt. Er heerst krapte op de arbeidsmarkt. Schoonmaakwerk is vooral handmatig werk en is ook zwaar werk. De schoonmaakbranche is dringend op zoek naar technologische oplossingen die het werk in de toekomst kunnen verlichten. Eén van die technologische oplossingen is de introductie van schoonmaakrobots , die op dit moment mondjesmaat op de markt worden gebracht. Schoonmaakorganisaties weten nog niet goed hoe deze robots efficiënt in te zetten, het vergt nog veel tijd om ze te kunnen gebruiken en schoonmaakmedewerkers zijn terughoudend om ermee te werken. Het project Assisted Cleaning Robots (ACR) richt zich op de volgende onderzoeksvraag: “hoe integreer je robottechnologie in het werkproces in de schoonmaakbranche, zodat een robot enerzijds zo optimaal mogelijk het werkproces ondersteunt, en anderzijds zo optimaal mogelijk met de mens samenwerkt.” Wat hierin optimaal is en hoe dit gemeten kan worden, is onderdeel van het onderzoek en is afhankelijk van de technologische mogelijkheden, de mensen die er mee werken, en de werkomgeving. In dit project werken Fontys Hogeschool Engineering, Fontys Hogeschool Techniek & Logistiek en de Haagse Hogeschool samen met schoonmaakorganisaties CSU en Hectas en andere bedrijven (toeleveranciers van schoonmaakrobots als ontwikkelaars), nationaal samenwerkingsverband Holland Robotics en brancheorganisatie Schoonmakend Nederland. Dit project kent een looptijd van twee jaar en gaat van start op 1 november 2021. In dit project worden nieuwe schoonmaakprocessen gedefinieerd en wordt op basis van deze processen technologie ontwikkeld (waar doorgaans eerst een nieuw product wordt ontwikkeld en daarna pas gekeken naar hoe dit product in te zetten). In dit project staat de mens die met de technologie in het proces moet gaan werken centraal. De technologie en het proces worden gevalideerd middels praktijktests met de betrokken schoonmaakorganisaties, op representatieve locaties. Hieruit worden lessen getrokken voor verbeteringen.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.