Service of SURF
© 2025 SURF
pH-sensitive gels: By using a cyclohexane-based scaffold to which various amino acid based substituents can be connected, low-molecular-weight compounds were obtained that can gelate water at very low concentrations. Their modular design (see picture: AA = amino acid(s), X = hydrophilic substituent, dark purple = hydrophobic region, light purple = hydrophilic region), allows tuning of the thermally and pH-induced reversible gel-to-sol transition of their gels.
The concurrent self-assembly of new 1,3,5-trisamide-cyclohexane-based low molecular weight hydrogelators and various surfactants in water leads to the formation of self-assembled fibrillar networks with encapsulated micelles. This prototype system presents an example of orthogonal self-assembly, that is, the independent formation of two different supramolecular structures, each with their own characteristics that coexist within a single system.
LINK
Seven new 1,3,5-cyclohexyltricarboxamide-phenylalanine derivatives were synthesized in order to investigate the effect of the amino acid chirality on the gelating properties of these small molecules in water. Gelation tests have shown that enantiomerically pure homochiral 1,3,5-cyclohexyltricarboxamide-L-phenylalanine is a non-hydrogelator as it crystallizes from water, whereas the heterochiral derivatives with either two L-phenylalanine moieties and one D-phenylalanine (LLD), or vice versa (DDL), are very good hydrogelators. Concentration-dependent gel-to-sol transition-temperature (T(gs)) curves for LLD or DDL gels show a sigmoidal behaviour, which is in contrast to the logarithmic curves generally observed for gels derived from low molecular weight gelators (LMWGs). Such sigmoidal behaviour can be related to interactions between fibre bundles, which give rise to intertwined bundles of fibres. Transmission electron microscopy (TEM) images of LLD and DDL gels show a network of thin, unbranched, fibre bundles with diameters of 20 nm. Right-handed twisted fibre bundles are present in the LLD gel, whereas left-handed structures can be found in the DDL gel. Each bundle of fibres consists of a finite number of primary fibres. Gels consisting of mixtures of gelators, LLD and DDL, and nongelators (LLL or DDD) were investigated by means of T(gs) measurements, CD spectroscopy and TEM. Results show that the incorporation of nongelator molecules into gel fibres occurs; this leads to higher T(gs) values and to changes in the helicity of the fibre bundles. Furthermore, it was found that peripheral functionalization of the homochiral derivatives LLL or DDD by means of a second amino acid or a hydrophilic moiety can overcome the effect of chirality; this process in turn leads to good hydrogelators.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.