Service of SURF
© 2025 SURF
Mobility Mentoring® combineert het onderwerp armoede met de laatste inzichten vanuit de hersenwetenschap over de effecten van schaarste en armoede en de ontwikkelbaarheid van hersenfuncties. Deze nieuwe aanpak helpt mensen bij de aanpak van hun financiële en sociale problemen. Het lectoraat Schulden & Incasso van de Hogeschool Utrecht, Platform31 en Impuls ambiëren een effectievere aanpak van financiële problematiek van huishoudens en zochten naar organisaties die de inzichten uit de Schaarste-theorie op een vruchtbare manier vertalen naar hun dagelijkse praktijk.
Global climate agreements call for action and an integrated perspective on mobility, energy and overall consumption. Municipalities in dense, urban areas are challenged with facilitating this transition with limited space and energy resources, and with future uncertainties. One important aspect of the transition is the adoption of electric vehicles, which includes the adequate design of charging infrastructure. Another important goal is a modal shift in transportation. This study investigated over 80 urban mobility policy measures that are in the policy roadmap of two of the largest municipalities of the Netherlands. This analysis consists of an inventory of policy measures, an evaluation of their environmental effects and conceptualizations of the policy objectives and conditions within the mobility transitions. The findings reveal that the two municipalities have similarities in means, there is still little anticipation of future technology and policy conditions could be further satisfied by introducing tailored measures for specific user groups.
In the Interreg Smart Shared Green Mobility Hubs project, electric shared mobility is offered through eHUBs in the city. eHUBs are physical places inneighbourhoods where shared mobility is offered, with the intention of changing citizens’ travel behaviour by creating attractive alternatives to private car use.In this research, we aimed to gain insight into psychological factors that influence car owners’ intentions to try out shared electric vehicles from an eHUB in order to ascertain:1. The psychological factors that determine whether car owners are willing to try out shared electric modalities in the eHUBs and whether these factors are identical for cities with different mobility contexts.2. How these insights into psychological determinants can be applied to entice car owners to try out shared electric modalities in the eHUBs.Research was conducted in two cities: Amsterdam (the Netherlands) and Leuven (Belgium). An onlinesurvey was distributed to car owners in both cities inSeptember 2020 and, additionally, interviews wereheld with 12 car owners in each city.In general, car owners from Amsterdam and Leuven seem positive about the prospect of having eHUBs in their cities. However, they show less interest inusing the eHUBs themselves, as they are satisfied with their private car, which suits their mobility needs. Car owners mentioned the following reasons for notbeing interested in trying out the eHUBs: they simply do not see a need to do so, the costs involved with usage, the need to plan ahead, the expected hasslewith registration and ‘figuring out how it works’, having other travel needs, safety concerns, having to travel a distance to get to the vehicle, and a preferencefor ownership. Car owners who indicated that they felt neutral, or that they were likely to try out an eHUB, mentioned the following reasons for doing so:curiosity, attractive pricing, convenience, not owning a vehicle like those offered in an eHUB, environmental concerns, availability nearby, and necessity when theirown vehicle is unavailable.In both cities, the most important predictor determining car owners’ intention to try out an eHUB is the perceived usefulness of trying out an eHUB.In Amsterdam, experience with shared mobility and familiarity with the concept were the second and third factors determining car owners’ interest in tryingout shared mobility. In Leuven, pro-environmental attitude was the second factor determining car owners’ openness to trying out the eHUBs, and agewas the third factor, with older car owners being less likely to try one out.Having established that perceived usefulness was the most important determinant for car owners to try out shared electric vehicles from an eHUB, weconducted additional research, which showed that, in both cities, three factors contribute to perceived usefulness, in order of relevance: (1) injunctive norms(e.g., perceiving that society views trying out eHUBs as correct behaviour); (2) trust in shared electric mobility as a solution to problems in the city (e.g., expecting private car owners’ uptake of eHUBs to contributeto cleaner air, reduce traffic jams in city, and combat climate change); and (3) trust in the quality and safety of the vehicles, including the protection of users’privacy. In Amsterdam specifically, two additional factors contributed to perceived usefulness of eHUBs: drivers’ confidence in their capacity to try out anunfamiliar vehicle from the eHUB and experience of travelling in various modes of transport.Drawing on the relevant literature, the results of our research, and our behavioural expertise, we make the following recommendations to increase car users’ uptake of shared e-mobility:1. Address car owners’ attentional bias, which filters out messages on alternative transport modes.2. Emphasise benefits of (trying out) shared mobility from different perspectives so that multiple goals can be addressed.3. Change the environment and the infrastructure, as infrastructure determines choice of transport.4. For Leuven specifically: target younger car owners and car owners with high pro-environmental attitudes.5. For Amsterdam specifically: provide information on eHUBs and opportunities for trying out eHUBs.
MULTIFILE
Nature areas in North-West Europe (NWE) face an increasing number of visitors (intensified by COVID-19) resulting in an increased pressure on nature, negative environmental impacts, higher management costs, and nuisance for local residents and visitors. The high share of car use exaggerates these impacts, including peak pressures. Furthermore, the almost exclusive access by car excludes disadvantaged people, specifically those without access to a car. At the same time, the urbanised character of NWE, its dense public transport network, well-developed tourism & recreation sector, and presence of shared mobility providers offers ample opportunities for more sustainable tourism. Thus, MONA will stimulate sustainable tourism in and around nature areas in NWE which benefits nature, the environment, visitors, and the local economy. MONA will do so by encouraging a modal shift through facilitating sustainableThe pan-European Innovation Action, funded under the Horizon Europe Framework Programme, aims to promote innovative governance processes ,and help public authorities in shaping their climate mitigation and adaptation policies. To achieve this aim, the GREENGAGE project will leverage citizens’ participation and equip them with innovative digital solutions that will transform citizen’s engagement and cities’ effectiveness in delivering the European Green Deal objectives for carbon neutral cities.Focusing on mobility, air quality and healthy living, citizens will be inspired to observe and co-create their cities by sensing their urban environments. The aim to complement, validate, and enrich information in authoritative data held by the public administrations and public agencies. This will be facilitated by engaging with citizens to co-create green initiatives and to develop Citizen Observatories. In GREENGAGE, Citizen Observatories will be a place where pilot cities will co-examine environmental issues integrating novel bottom-up process with top-down perspectives. This will provide the basis to co-create and co-design innovative solutions to monitor environmental problems at ground level with the help of citizens.With two interrelated project dimensions, the project aims to enhance intelligence applied to city decision-making processes and governance by engaging with citizen observations integrated with Copernicus, GEOSS, in-situ, and socio-economic intelligence, and by delivering innovative governance models based on novel toolboxes of decision-making methodologies and technologies. The envisioned citizens observatory campaigns will be deployed and fully demonstrated in 5 pilot engagements in selected European cities and regions including: Bristol (the United Kingdom), Copenhagen (Denmark), Turano / Gerace (Italy) and the region of Noord Brabant (the Netherlands). These innovation pilots aim to highlight the need for smart city governance by promoting citizen engagement, co-creation, gathering new data which will complement existing datasets and evidence-based decision and policymaking.
In Europe nearly 10% of the population suffers from diabetes and almost 1% from Rheumatoid Arthritis which can lead to serious problems with mobility and active participation, especially in the ageing population. Pedorthists deliver personalised designed and manufactured orthopaedic footwear or insoles for these patients. However, despite their often laborious efforts upfront, the industry has very little means to quantify how successful the fitting and function of a shoe is. They have to rely on subjective, qualitative measures such as client satisfaction and diminishing of complaints. Although valuable, the need for objective quantitative data in this field is growing. Foot plantar pressure and shear forces are considered major indicators of potential foot problems. Devices to measure plantar pressure slowly gain terrain as providers of objective quantitative data to guide orthotic design and manufacturing. For shear forces however, measuring devices are not yet commercial available. Although shear forces are considered as a major contributor to ulcer formation in diabetic feet, their exact role still requires elucidation and quantification. This project aims to develop a prototype of an in-shoe wearable device that measures both shear forces and pressure using state-of-the-art developments in sensor technologies, smart textiles and wireless data transfer. The collaboration of pedorthists’ small and medium-sized enterprises (SME)’s with medical device engineering companies, knowledge institutes,technical universities and universities of applied sciences in this project will bring together the different fields of expertise required to create an innovative device. It is expected that the tool will be beneficial to improve the quality of pedorthists’ services and potentially reduce health insurance costs. Furthermore, it can be used in new shear forces research and open new business potential. However, the eventual aim is to improve patient care and help maintain personal mobility and participation in society.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.