Service of SURF
© 2025 SURF
Mobility Mentoring® combineert het onderwerp armoede met de laatste inzichten vanuit de hersenwetenschap over de effecten van schaarste en armoede en de ontwikkelbaarheid van hersenfuncties. Deze nieuwe aanpak helpt mensen bij de aanpak van hun financiële en sociale problemen. Het lectoraat Schulden & Incasso van de Hogeschool Utrecht, Platform31 en Impuls ambiëren een effectievere aanpak van financiële problematiek van huishoudens en zochten naar organisaties die de inzichten uit de Schaarste-theorie op een vruchtbare manier vertalen naar hun dagelijkse praktijk.
Global climate agreements call for action and an integrated perspective on mobility, energy and overall consumption. Municipalities in dense, urban areas are challenged with facilitating this transition with limited space and energy resources, and with future uncertainties. One important aspect of the transition is the adoption of electric vehicles, which includes the adequate design of charging infrastructure. Another important goal is a modal shift in transportation. This study investigated over 80 urban mobility policy measures that are in the policy roadmap of two of the largest municipalities of the Netherlands. This analysis consists of an inventory of policy measures, an evaluation of their environmental effects and conceptualizations of the policy objectives and conditions within the mobility transitions. The findings reveal that the two municipalities have similarities in means, there is still little anticipation of future technology and policy conditions could be further satisfied by introducing tailored measures for specific user groups.
https://journal.gerontechnology.org/currentIssueContent.aspx?aid=2248 "Abstract Purpose Existing solutions facilitating mobility among older adults mainly focus on supporting physical disabilities. However, solutions are more likely to succeed when current activities and capabilities serve as a starting point. Participatory design is a suitable approach to detect these. We investigated (i) how participatory design techniques can be applied to obtain insight into the daily activities and capabilities of older adults, and (ii) what the design implications are of taking these activities and capabilities as a basis for the development of a mobility-enhancing application. Method Research context was a three-year European project comprising health care managers, researchers, and designers from Belgium, the Netherlands, Italy, Spain, and Germany. Older adults were involved in each of the four-step iterative design process (participatory design sessions, scenarios, user requirements, and user evaluation). Results & Discussion (i) Reflection on the design process showed that particular issues should be considered in selecting participatory design tools (e.g., diaries and photo assignments are more suited than interviews) and organizing joint sessions (e.g., reserve more time for informal activities, address privacy concerns, and provide opportunity to ventilate doubts towards technology). The participatory design methods appeared suited to provide input for the application’s functionalities based on activities and capabilities. (ii) A mobility-enhancing mobile application for older adults should apply (a) Demographics: validated user profiles as a basis, but enable personalization; (b) Cognitive and physical abilities: Facilitate activities close to the home of the older adults; (c) Safety perception: Support older adults cognitively during their activities outdoor, but also prior to and afterwards and foster social contact. Future work The results of the current study have been used as input for prototype development, which has been tested in a pilot study in Spain and The Netherlands."
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.