Service of SURF
© 2025 SURF
In mobile robotics, LASER scanners have a wide spectrum of indoor and outdoor applications, both in structured and unstructured environments, due to their accuracy and precision. Most works that use this sensor have their own data representation and their own case-specific modeling strategies, and no common formalism is adopted. To address this issue, this manuscript presents an analytical approach for the identification and localization of objects using 2D LiDARs. Our main contribution lies in formally defining LASER sensor measurements and their representation, the identification of objects, their main properties, and their location in a scene. We validate our proposal with experiments in generic semi-structured environments common in autonomous navigation, and we demonstrate its feasibility in multiple object detection and identification, strictly following its analytical representation. Finally, our proposal further encourages and facilitates the design, modeling, and implementation of other applications that use LASER scanners as a distance sensor.
Even though considerable amounts of valuable wood are collected at waste collection sites, most of it remains unused and is burned: it is too labor-intensive to sort, process and upcycle useable parts. Valuable wood thus becomes worthless waste, against circular economy principles. In MoBot-Wood, waste collection organizations HVC and the municipality of Amsterdam, together with Rolan Robotics, Metabolic and AUAS investigate how waste wood can be sorted and processed at waste collection sites, using an easy-to-deploy robotic solution. In various preceding and on-going projects, AUAS and partners are exploring circular wood intake, sorting and processing using industrial robots, including processes like machine vision, 3D scanning, sawing, and milling. These projects show that harvesting waste wood is a challenging matter. Generally, the wood is only partially useable due to the presence of metal, excessive paint, deterioration by fungi and water, or other contamination and damages. To harvest useable wood thus requires intensive sorting and processing. The solution of transporting all the waste wood from collection sites to a central processing station might be too expensive and have a negative environmental impact. Considering that much of collected wood will need to be discarded, often no wood is harvested at all, due to the costs for collection and shipping. Speaking with several partners in related projects, the idea emerged to develop a mobile robotic station, which can be (temporarily) deployed at waste collection sites, to intake, sort and process wood for upcycling. In MoBot-Wood, research entails the design of such station, its deployment conditions, and a general assessment of its potential impact. The project investigates robotic sorting and processing on location as a new approach to increase the amount of valuable, useable wood harvested at waste collection sites, by avoiding material transport and reducing the volume of remaining waste.