Service of SURF
© 2025 SURF
This study addresses the burgeoning global shortage of healthcare workers and the consequential overburdening of medical professionals, a challenge that is anticipated to intensify by 2030 [1]. It explores the adoption and perceptions of AI-powered mobile medical applications (MMAs) by physicians in the Netherlands, investigating whether doctors discuss or recommend these applications to patients and the frequency of their use in clinical practice. The research reveals a cautious but growing acceptance of MMAs among healthcare providers. Medical mobile applications, with a substantial part of IA-driven applications, are being recognized for their potential to alleviate workload. The findings suggest an emergent trust in AI-driven health technologies, underscored by recommendations from peers, yet tempered by concerns over data security and patient mental health, indicating a need for ongoing assessment and validation of these applications
ABSTRACT Objective: To evaluate the effectiveness of the WhiteTeeth mobile app, a theory-based mobile health (mHealth) program for promoting oral hygiene in adolescent orthodontic patients. Methods: In this parallel randomized controlled trial, the data of 132 adolescents were collected during three orthodontic check-ups: at baseline (T0), at 6-week follow-up (T1), and at 12-week follow-up (T2). The intervention group was given access to the WhiteTeeth app in addition to usual care (n=67). The control group received usual care only (n=65). The oral hygiene outcomes were the presence and the amount of dental plaque (Al-Anezi and Harradine plaque Index); and the total number of sites with gingival bleeding (Bleeding on Marginal Probing Index). Oral health behavior and its psychosocial factors were measured through a digital questionnaire. We performed linear mixed model analyses to determine the intervention effects. Results: At 6-week follow-up, the intervention led to a significant decrease in gingival bleeding (B=-3.74; 95%CI -6.84 to -0.65), and an increase in the use of fluoride mouth rinse (B=1.93; 95%CI 0.36 to 3.50). At 12-week follow-up, dental plaque accumulation (B=-11.32; 95%CI -20.57 to -2.07) and the number of sites covered. Conclusions: The results show that adolescents with fixed orthodontic appliances can be helped to improve their oral hygiene when usual care is combined with a mobile app that provides oral health education and automatic coaching. Netherlands Trial Registry Identifier: NTR6206: 20 February 2017.
LINK
Background:It is unclear why some physical activity (PA) mobile health (mHealth) interventions successfully promote PA whereas others do not. One possible explanation is the variety in PA mHealth interventions—not only do interventions differ in the selection of persuasive strategies but also the design and implementation of persuasive strategies can vary. However, limited studies have examined the different designs and technical implementations of strategies or explored if they indeed influenced the effectiveness of the intervention.Objective:This scoping review sets out to explore the different technical implementations and design characteristics of common and likely most effective persuasive strategies, namely, goal setting, monitoring, reminders, rewards, sharing, and social comparison. Furthermore, this review aims to explore whether previous mHealth studies examined the influence of the different design characteristics and technical operationalizations of common persuasive strategies on the effectiveness of the intervention to persuade the user to engage in PA.Methods:An unsystematic snowball and gray literature search was performed to identify the literature that evaluated the persuasive strategies in experimental trials (eg, randomized controlled trial, pre-post test). Studies were included if they targeted adults, if they were (partly) delivered by a mobile system, if they reported PA outcomes, if they used an experimental trial, and when they specifically compared the effect of different designs or implementations of persuasive strategies. The study methods, implementations, and designs of persuasive strategies, and the study results were systematically extracted from the literature by the reviewers.Results:A total of 29 experimental trials were identified. We found a heterogeneity in how the strategies are being implemented and designed. Moreover, the findings indicated that the implementation and design of the strategy has an influence on the effectiveness of the PA intervention. For instance, the effectiveness of rewarding was shown to vary between types of rewards; rewarding goal achievement seems to be more effective than rewarding each step taken. Furthermore, studies comparing different ways of goal setting suggested that assigning a goal to users might appear to be more effective than letting the user set their own goal, similar to using adaptively tailored goals as opposed to static generic goals. This study further demonstrates that only a few studies have examined the influence of different technical implementations on PA behavior.Conclusions:The different implementations and designs of persuasive strategies in mHealth interventions should be critically considered when developing such interventions and before drawing conclusions on the effectiveness of the strategy as a whole. Future efforts are needed to examine which implementations and designs are most effective to improve the translation of theory-based persuasive strategies into practical delivery forms.
Veel patiënten binnen de GGZ kampen met chronische pijn en depressie. Het bevorderen van een gezond beweegpatroon speelt een belangrijke rol in hun behandeling. Deze patiënten kunnen echter door emoties en veranderde prikkelverwerking signalen van het lichaam niet goed inschatten. Daarbij zijn hun klachten belemmerend in hun activiteiten waardoor motivatie vaak afwezig is. GGZ-professionals gebruiken zorgstandaarden waarbij uitgegaan wordt van 'one-size-fits-all' behandelprogramma's. Deze sluiten onvoldoende aan bij de behoefte aan gepersonaliseerde interventies uitgaande van zelfmanagement van de individuele patiënt. Dit pleit voor een instrument dat professionals helpt objectief inzicht te krijgen in het beweegpatroon van hun patiënten, dat gepersonaliseerde feedback geeft en ondersteunt bij de verdere individueel passende begeleiding van de patiënt. Zelfmeettechnologie ('activity trackers') lijkt hier goed te passen. De mogelijkheden om zelfmeettechnologie als basis voor de behandeling van deze patiënten te gebruiken zijn echter bij GGZ-professionals veelal onbekend. Daarnaast is het inzetten van alleen zelfmeettechnologie waarschijnlijk onvoldoende en is niet goed bekend hoe deze patiënten gemotiveerd kunnen worden om deze technologie te (blijven) gebruiken. In dit project willen de Hanzehogeschool Groningen, Inter-Psy, Transcare en MobileCare samen met professionals en patiënten en andere nog te betrekken partners (o.a. het Rob Giel Onderzoekscentrum als trekker van het eHealth netwerk Noord-Nederland heeft aangegeven een bijdrage te willen leveren) ontdekken hoe op een goede manier aan de bovenbeschreven behoefte van GGZ-professionals kan worden bijgedragen. Beoogd wordt om met deze subsidie een proof of concept te leveren van een digitaal instrument dat op basis van zelfmeettechnologie meerwaarde biedt in de behandeling van patiënten met chronische pijn en depressie. Deze proof of concept vormt de basis voor een te schrijven subsidievoorstel om dit verder te ontwikkelen.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.