This report presents the experimental and numerical work carried out by ECN and Hanze University of Applied Sciences on methane sorption on activated carbon, as part of their activities within the EDGaR Energy Storage project. Eleven different activated carbon types were tested. It was found that MaxSorb MSC-30 offered the highest methane mass storage density (m/m ratio). However, due to the low density of the MaxSorb MSC-30 activated carbon, the highest volumetric methane storage density (V/V ratio) was found for Brightblack. An increase of the packing density and heat conductivity significantly improves the V/V ratio and shortens the time needed to reach thermal equilibrium. In the case of the Brightblack activated carbon, a total V/V ratio of 112 was found at 12 oC and 40 bar, implying an effective storage density that is 3 times higher than for compressed methane. During the adsorption of methane on activated carbon, sorption heat is released and the temperature of the bed is increased, which negatively affects the effective V/V ratio. Temperature rises up to 70 oC were experimentally observed at higher methane inflow rates. For MaxSorb MSC-30 a temperature rise of 25 oC reduced the effective V/V ratio by about 20 %. The temperature rise of the Brightblack bed caused relatively smaller reductions in the volumetric storage density. Calculations with the validated numerical models indicated an even higher temperature increase for the full scale methane storage, reaching bed temperatures up to 137-150 oC in the case of the MaxSorb MSC-30 activated carbon. At this temperature range, the models indicate a V/V ratio fall down to 46. This performance is similar to the one offered by direct methane compression to 40 bar, and is much lower than the V/V ratio of ~ 100 that was found both experimentally and by calculations for the lab scale reactor performance. The calculations showed, that the low bed permeability can limit the gas flow during adsorption and desorption. A high reactor diameter can countervail the effect of permeability, but the higher dimensions impede the heat dissipation and thus decrease the storage efficiency. Efficient temperature control and management are very important to effectively make use of the methane storage capacity through adsorption.
This report presents the experimental and numerical work carried out by ECN and Hanze University of Applied Sciences on methane sorption on activated carbon, as part of their activities within the EDGaR Energy Storage project. Eleven different activated carbon types were tested. It was found that MaxSorb MSC-30 offered the highest methane mass storage density (m/m ratio). However, due to the low density of the MaxSorb MSC-30 activated carbon, the highest volumetric methane storage density (V/V ratio) was found for Brightblack. An increase of the packing density and heat conductivity significantly improves the V/V ratio and shortens the time needed to reach thermal equilibrium. In the case of the Brightblack activated carbon, a total V/V ratio of 112 was found at 12 oC and 40 bar, implying an effective storage density that is 3 times higher than for compressed methane. During the adsorption of methane on activated carbon, sorption heat is released and the temperature of the bed is increased, which negatively affects the effective V/V ratio. Temperature rises up to 70 oC were experimentally observed at higher methane inflow rates. For MaxSorb MSC-30 a temperature rise of 25 oC reduced the effective V/V ratio by about 20 %. The temperature rise of the Brightblack bed caused relatively smaller reductions in the volumetric storage density. Calculations with the validated numerical models indicated an even higher temperature increase for the full scale methane storage, reaching bed temperatures up to 137-150 oC in the case of the MaxSorb MSC-30 activated carbon. At this temperature range, the models indicate a V/V ratio fall down to 46. This performance is similar to the one offered by direct methane compression to 40 bar, and is much lower than the V/V ratio of ~ 100 that was found both experimentally and by calculations for the lab scale reactor performance. The calculations showed, that the low bed permeability can limit the gas flow during adsorption and desorption. A high reactor diameter can countervail the effect of permeability, but the higher dimensions impede the heat dissipation and thus decrease the storage efficiency. Efficient temperature control and management are very important to effectively make use of the methane storage capacity through adsorption.
Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitable for methane storage applications at moderate pressures. We study and test the main thermodynamic and kinetic characteristics of methane adsorption and desorption on activated carbon.
In dit KIEM-project verkennen we de haalbaarheid van een nieuw concept voor energietransitie en circulaire economie: EnTranCe-for-a-Community. Dit is een generiek concept voor draagvlak voor lokale waarde-creatie en groene energieproductie. Na discussies met ons werkveld implementeren we EnTranCe-for-a-Community hier als een publiekskas met technologie om lokale biomassa om te zetten in groene energie (gas) en biocompost. We onderzoeken of dit concept een aantrekkelijke uitbreiding is voor lokale energie-initiatieven en energiecoöperaties (doorgaans bezig met zon en/of wind) als alternatief voor aardgas of een warmtenet. We willen weten of en hoe het realiseren van een EnTranCe-for-a-Community-project op een concrete locatie kansrijk is. Dat kansrijk zijn wordt op drie niveaus onderzocht: (a) de bijdrage aan de lokale energietransitie (kosten/baten); (b) de bijdrage aan een lokale circulaire economie door verwaarding van lokale biomassa (kosten/baten) en (c) de bijdrage aan draagvlak en enthousiasme (en dus praktische haalbaarheid) voor deze ontwikkelingen, door het nauw betrekken van lokale stakeholders bij de studie en eventuele implementatie. EnTranCe-for-a-Community combineert eerder opgedane kennis en kunde op een innovatieve manier en beoogt lokale energietransitie te verbreden naar lokale biomassa. Deze haalbaarheidsstudie wordt uitgevoerd door een nieuw samenwerkingsverband van partners uit de coöperatieve en lokale energiesector, MKB en het expertisecentrum EnTranCe van de Hanzehogeschool Groningen. Allen dragen bij aan de haalbaarheidsstudie met kennis, kunde en netwerken die nodig zijn voor dit onderzoek en voor realisatie op langere termijn, indien voldoende kansrijk. We gebruiken de beproefde iteratieve Lean Startup-aanpak, die juist is ontwikkeld voor dit type complexe en multidimensionale projecten. We gaan komen tot een business en een mission model voor eventuele toekomstige implementatie ergens in Groningen op basis van de gedocumenteerde kansrijkheid van het concept. Op die manier zal dit KIEM-project de basis leggen voor een veel groter projectvoorstel voor verdere realisatie.
De landbouw in Nederland zorgt voor een netto CO2- en stikstofuitstoot. Om de druk op het milieu te verminderen is het noodzakelijk deze uitstoot te reduceren. Het aandeel methaan- en stikstofuitstoot van verse mest is relatief hoog t.o.v. de uitstoot bij oude mest. Het is daarom van essentieel belang om verse mest direct te conserveren waardoor de uitstoot van methaan en stikstof minimaal is. Een methode voor het conserveren van mest is de toevoeging van duurzaam mierenzuur uit hernieuwbare energie in de mestkelder om zodoende de pH te verlagen waardoor methaan producerende bacteriën geen kans krijgen om methaan te produceren. Bovendien zorgt de verlaging van de pH voor een betere oplosbaarheid van ammoniak. De productie van mierenzuur kan d.m.v. een PV-katalytische reactie van water en CO2 naar mierenzuur. Uiteindelijk kan de aangezuurde mest worden toegevoegd aan een vergister waardoor een hoge methaanpotentiaal uit de verse mest gehaald kan worden. In dit onderzoek wordt onderzocht: (1) wat de extra methaanopbrengst in een vergister kan zijn door gebruik te maken van aangezuurde verse mest i.p.v. onaangezuurde mest. Hierbij worden methaanpotentialen van mierenzuur, verse mest en aangezuurde mest met elkaar vergeleken; (2) wat de vermeden stikstofemissie kan zijn door mest aan te zuren. Voorafgaande aan de methaanpotentiaalmetingen en stikstofmetingen worden de mestmonsters en mengsels onderzocht op mengbaarheid met mierenzuur en op pH-buffercapaciteit. Met de resultaten kan een procesdiagram voor een pilot ontworpen worden voor een vervolgonderzoek om mest aan te zuren op boerderijschaal en in een later stadium te vergisten. Ook wordt een centrale mierenzuurproductie faciliteit doorgerekend. Hierbij wordt het mierenzuur naar de veehouderij aangevoerd en de verzuurde mest afgevoerd. Veehouders zonder vergister kunnen dan ook deelnemen aan het mierenzuurvergistingsproces. Uiteindelijk zal het mierenzuur-in-de-stal vergistingsconcept bijdragen aan vermindering van de methaan- en de ammoniakemissie en de gasopbrengst uit verse mest verhogen.
Waarde creëren uit afval door methaan om te zetten in duurzame plastic alternatieven Methaan is een krachtig broeikasgas dat aanzienlijk bijdraagt aan de opwarming van de aarde. Nationale en internationale overeenkomsten vragen een aanzienlijke reductie van broeikasgassen in 2030 (49% t.o.v 1990). In Europa is meer dan 60% van de methaanemissies afkomstig van landbouw (40%) en (organisch) afval (20%) (1). Een deel van het geproduceerde methaan kan worden hergebruikt door het om te zetten in warmte en elektriciteit. Een groot deel van deze methaan houdende uitstoot kan echter niet worden gebruikt, vanwege te lage methaanconcentraties en/ of onvoldoende hoeveelheden. Dit is het geval voor bronnen, zoals stortplaatsen en kleine vergisters. Hier wordt methaan uiteindelijk afgefakkeld of uitgestoten naar de atmosfeer, terwijl het een groot potentieel heeft om te worden omgezet in biobased materialen, zoals bioplastics. Dit project zal onderzoeken of methaan bronnen die nu (deels) onbenut worden, gebruikt kunnen worden voor de productie van waardevolle materialen. Hierbij focussen we op biogassen uit stortplaatsen en vergisters waaruit het bioplastic PHB geproduceerd kan worden. Er is een potentie van 158.000 ton PHB per jaar, alleen al in Nederland. M2M heeft twee hoofddoelen: 1. Om methaan houdend biogas te recyclen tot duurzame plastic alternatieven. Methaan kan met behulp van micro-organismen biologisch omgezet worden in het biopolymeer polyhydroxybutyraat (PHB). Dit zal eerst op laboratorium schaal uitgetest worden en waarna een biofilter installatie zal worden ontworpen. 2. Het bestuderen van de haalbaarheid om methaan uit biogas te gebruiken voor PHB-productie met een methaan-bron die hiervoor nog niet eerder is onderzocht. Aangezien PHB een biologisch afbreekbaar polymeer is, draagt dit project bij aan vermindering van wereldwijde plasticvervuiling. Potentiële hernieuwbare koolstofbronnen, die kunnen worden gebruikt voor de productie van biopolymeer, leveren een bijdrage aan een circulair 'waste to value'-systeem.