Service of SURF
© 2025 SURF
Conference Paper From the article: Abstract Learning analytics is the analysis and visualization of student data with the purpose of improving education. Literature reporting on measures of the effects of data-driven pedagogical interventions on learning and the environment in which this takes place, allows us to assess in what way learning analytics actually improves learning. We conducted a systematic literature review aimed at identifying such measures of data-driven improvement. A review of 1034 papers yielded 38 key studies, which were thoroughly analyzed on aspects like objective, affected learning and their operationalization (measures). Based on prevalent learning theories, we synthesized a classification scheme comprised of four categories: learning process, student performance, learning environment, and departmental performance. Most of the analyzed studies relate to either student performance or learning process. Based on the results, we recommend to make deliberate decisions on the (multiple) aspects of learning one tries to improve by the application of learning analytics. Our classification scheme with examples of measures may help both academics and practitioners doing so, as it allows for structured positioning of learning analytics benefits.
Objectives: To investigate immediate changes in walking performance associated with three implicit motor learning strategies and to explore patient experiences of each strategy. Design: Participants were randomly allocated to one of three implicit motor learning strategies. Within-group comparisons of spatiotemporal parameters at baseline and post strategy were performed. Setting: Laboratory setting. Subjects: A total of 56 community-dwelling post-stroke individuals. Interventions: Implicit learning strategies were analogy instructions, environmental constraints and action observation. Different analogy instructions and environmental constraints were used to facilitate specific gait parameters. Within action observation, only videotaped gait was shown. Main measures: Spatiotemporal measures (speed, step length, step width, step height) were recorded using Vicon 3D motion analysis. Patient experiences were assessed by questionnaire. Results: At a group level, three of the four analogy instructions (n=19) led to small but significant changes in speed (d=0.088m/s), step height (affected side d=0.006m) and step width (d=–0.019m), and one environmental constraint (n=17) led to significant changes in step width (d=–0.040m). At an individual level, results showed wide variation in the magnitude of changes. Within action observation (n=20), no significant changes were found. Overall, participants found it easy to use the different strategies and experienced some changes in their walking performance. Conclusion: Analogy instructions and environmental constraints can lead to specific, immediate changes in the walking performance and were in general experienced as feasible by the participants. However, the response of an individual patient may vary quite considerably.
The workforce in the EU is ageing, and this requires investment in older workers so that the organisations in which they work remain competitive and viable. One such investment takes the form of organising and facilitating intergenerational learning: learning between and among generations that can lead to lifelong learning, innovation and organisational development. However, successfully implementing intergenerational learning is complex and depends on various factors at different levels within the organisation. This multidisciplinary literature review encompasses work from the fields of cognitive psychology, occupational health, educational science, human resource development and organisational science and results in a framework that organisations can use to understand how they can create the conditions needed to ensure that the potential of their ageing workforce is tapped effectively and efficiently. Although not a comprehensive review, this chapter serves as a basis for further empirical research and gives practitioners an insight into solving a growing problem.
De analyse van data over het leren van studenten kan waardevol zijn. 'Learning analytics' gebruikt studentdata om het leerproces te verbeteren. Welke organisatorische vaardigheden hebben Nederlandse instellingen voor hoger onderwijs nodig om learning analytics succesvol in te zetten?Doel We onderzoeken welke organisatievaardigheden er nodig zijn om in het hoger onderwijs met 'learning analytics' te werken. Met learning analytics krijgen studenten, docenten en studiebegeleiders inzicht in het leerproces. Dit doen ze door data van studenten te analyseren. In de praktijk blijkt het lastig voor onderwijsinstellingen om hier over de hele breedte van de organisatie mee te gaan werken. We kijken in dit onderzoek welke vaardigheden er nodig zijn binnen een organisatie om 'learning analytics' slim in te zetten. Resultaten Dit onderzoek loopt. Tot nu toe hebben we drie wetenschappelijke artikelen gepubliceerd: A First Step Towards Learning Analytics: Implementing an Experimental Learning Analytics Tool Where is the learning in learning analytics? A systematic literature review to identify measures of affected learning From Dirty Data to Multiple Versions of Truth: How Different Choices in Data Cleaning Lead to Different Learning Analytics Outcomes Looptijd 01 december 2016 - 01 december 2020 Aanpak Het onderzoek bestaat uit literatuuronderzoek, een case study bij Nederlandse onderwijsinstellingen en een validatieproject. Dit leidt tot de ontwikkeling van een Learning Analytics Capability Model (LACM): een model dat beschrijft welke organisatorische vaardigheden nodig zijn om learning analytics in de praktijk toe te passen.
De analyse van data over het leren van studenten kan waardevol zijn. 'Learning analytics' gebruikt studentdata om het leerproces te verbeteren. Welke organisatorische vaardigheden hebben Nederlandse instellingen voor hoger onderwijs nodig om learning analytics succesvol in te zetten?Doel We onderzoeken welke organisatievaardigheden er nodig zijn om in het hoger onderwijs met 'learning analytics' te werken. Met learning analytics krijgen studenten, docenten en studiebegeleiders inzicht in het leerproces. Dit doen ze door data van studenten te analyseren. In de praktijk blijkt het lastig voor onderwijsinstellingen om hier over de hele breedte van de organisatie mee te gaan werken. We kijken in dit onderzoek welke vaardigheden er nodig zijn binnen een organisatie om 'learning analytics' slim in te zetten. Resultaten Dit onderzoek loopt. Tot nu toe hebben we drie wetenschappelijke artikelen gepubliceerd: A First Step Towards Learning Analytics: Implementing an Experimental Learning Analytics Tool Where is the learning in learning analytics? A systematic literature review to identify measures of affected learning From Dirty Data to Multiple Versions of Truth: How Different Choices in Data Cleaning Lead to Different Learning Analytics Outcomes Looptijd 01 december 2016 - 01 december 2020 Aanpak Het onderzoek bestaat uit literatuuronderzoek, een case study bij Nederlandse onderwijsinstellingen en een validatieproject. Dit leidt tot de ontwikkeling van een Learning Analytics Capability Model (LACM): een model dat beschrijft welke organisatorische vaardigheden nodig zijn om learning analytics in de praktijk toe te passen.
It is predicted that 5 million rural jobs will have disappeared before 2016. These changes do notonly concern farmers. In their decline all food chain related SMEs will be affected severely. Newbusiness opportunities can be found in short food supply chains. However, they can onlysucceed if handled professionally and on a proper scale. This presents opportunities on 4interconnected strands:Collect market relevant regional dataDevelop innovative specialisation strategies for SMEsForge new forms of regional cooperation and partnership based on common benefits andshared values.Acquire specific skillsREFRAME takes up these challenges. In a living lab of 5 regional pilots, partners willdemonstrate the Regional Food Frame (RFF) as an effective set of measures to scale up andaccommodate urban food demands and regional supplies. New data will reveal the regions’ ownstrengths and resources to match food demand and supply. REFRAME provides a supportinfrastructure for food related SMEs to develop and implement their smart specializationstrategies in food chains on the urban-rural axis. On their way towards a RFF, all pilots will use a5-step road map. A transnational learning lab will be set up in support of skill development andtraining of all stakeholders. REFRAME pools the know-how needed to set up these Regional FoodFrames in a transnational network of experts, each closely linked and footed in its own pilotregion.