Service of SURF
© 2025 SURF
It has been argued that teachers need practical principled knowledge and that design research can help develop such knowledge. What has been underestimated, however, is how to make such know-how and know-why useful for teachers. To illustrate how principled knowledge can be “practicalized”, we draw on a design study in which we developed a professional development program for primary school teachers (N = 5) who learned to design language-oriented mathematics lessons. The principled knowledge we used in the program stemmed from the literature on genre pedagogy, scaffolding, and hypothetical learning trajectories. We show how shifting to a simple template focusing on “domain text” rather than genre, and “reasoning steps” rather than genre features made the principled knowledge more practical for the teachers.
LINK
We investigated whether Early Algebra lessons that explicitly aimed to elicit mathematical discussions (Shift-Problem Lessons) invoke more and qualitatively better mathematical discussions and raise students’ mathematical levels more than conventional lessons in a small group setting. A quasi-experimental study (pre- and post-test, control group) was conducted in 6 seventh-grade classes (N =160). An analysis of the interaction processes of five student groups showed that more mathematical discussions occurred in the Shift-Problem condition. The quality of the mathematical discussions in the Shift-Problem condition was better compared to that in the Conventional Textbook condition, but there is still more room for improvement. A qualitative illustration of two typical mathematical discussions in the Shift-Problem condition are provided. Although students’ mathematical levels were raised a fair amount in both conditions, no differences between conditions were found. We concluded that Shift-Problem Lessons are powerful for eliciting mathematical discussions in seventh-grade Shift-Problem Early Algebra Lessons.