Service of SURF
© 2025 SURF
When reconstructing a shooting incident with a shotgun, the muzzle-to-target distance can be determined by relating the size of a dispersion pattern found on a crime scene to that of test shots. Ideally, the test shots are performed with the weapon and ammunition that were used in the incident. But sometimes examiners will have to resort to alternatives, such as using cartridges of the same brand and type but with another pellet size. For this reason, the relationship between pellet size and shotgun dispersion patterns was studied with both lead and steel shotgun pellets. Cartridges were loaded with identical cartridge cases, powder charges, and wads but with different pellet sizes, below size B. The cartridges were fired, and the dispersion patterns at 5 m in front of the muzzle were measured and compared. The results provide strong support for the proposition that shotgun dispersion patterns with both lead and steel shot increase with decreasing pellet size if all other relevant parameters are kept equal. The results also provide an indicative measure of the magnitude of the effect. Pattern sizes were approximately 1.7 times larger with #9 than with #0 lead shot and 1.4 times larger with #9 than with #1 steel shot. The differences between consecutive shot sizes were generally smaller. This means that cartridges of equal brand and type but with the next nearest shot number can be used for a muzzle-to-target distance determination, keeping the information of the current study in mind in the final interpretation of the results.
In this study, we examined the effects of a defender contesting jump shots on performance and gaze behaviors of basketball players taking jump shots. Thirteen skilled youth basketball players performed 48 shots from about 5 m from the basket; 24 uncontested and 24 contested. The participants wore mobile eye tracking glasses to measure their gaze behavior. As expected, an approaching defender trying to contest the shot led to significant changes in movement execution and gaze behavior including shorter shot execution time, longer jump time, longer ball flight time, later final fixation onset, and longer fixation on the defender. Overall, no effects were found for shooting accuracy. However, the effects on shot accuracy were not similar for all participants: six participants showed worse performance and six participants showed better performance in the contested compared to the uncontested condition. These changes in performance were accompanied by differences in gaze behavior. The participants with worse performance showed shorter absolute and relative final fixation duration and a tendency for an earlier final fixation offset in the contested condition compared to the uncontested condition, whereas gaze behavior of the participants with better performance for contested shots was relatively unaffected. The results confirm that a defender contesting the shot is a relevant constraint for basketball shooting suggesting that representative training designs should also include contested shots, and more generally other constraints that are representative of the actual performance setting such as time or mental pressure.
Purpose: To examine the effects of different small-sided games (SSGs) on physical and technical aspects of performance in wheelchair basketball (WB) players. Design: Observational cohort study. Methods: Fifteen highly trained WB players participated in a single 5v5 (24-s shot clock) match and three 3v3 SSGs (18-s shot clock) on a (1) full court, (2) half-court, and (3) modified-length court. During all formats, players’ activity profiles were monitored using an indoor tracking system and inertial measurement units. Physiological responses were monitored via heart rate and rating of perceived exertion. Technical performance, that is, ball handling, was monitored using video analysis. Repeated-measures analysis of variance and effect sizes (ESs) were calculated to determine the statistical significance and magnitude of any differences between game formats. Results: Players covered less distance and reached lower peak speeds during half-court (P ≤ .0005; ES ≥ very large) compared with all other formats. Greater distances were covered, and more time was spent performing moderate- and high-speed activity (P ≤ .008; ES ≥ moderate) during full court compared with all other formats. Game format had little bearing on physiological responses, and the only differences in technical performance observed were in relation to 5v5. Players spent more time in possession, took more shots, and performed more rebounds in all 3v3 formats compared with 5v5 (P ≤ .028; ES ≥ moderate). Conclusions: Court dimensions affect the activity profiles of WB players during 3v3 SSGs yet had little bearing on technical performance when time pressures (shot clocks) were constant. These findings have important implications for coaches to understand which SSG format may be most suitable for physically and technically preparing WB players. DOI: https://doi.org/10.1123/ijspp.2017-0500 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.