This research aims to obtain more insight in the perception of fabric drape and how fabric drape can be cat-egorized With the current 3D virtual technologies to simulate garments the fashion and clothing industry can speed up work processes, improve accuracy and reduce material consumption in fit, design and sales. Although the interest in 3D technology is increasing, the implementation on a large scale emerges only slowly. At the threshold between physical and virtual fitting the fashion industry faces new challenges and demands re-quiring responses out of rule. The measurement of fabric drape started in the first half of the previous cen-tury, after the introduction of 3D garment simulation fabric drape gained interest from more researchers to obtain information for the virtual drape. Intensive research has been undertaken to define ‘fabric hand’, however, research is limited for the definition of fabric drape. Better understanding of how fabrics drape and how they can be selected based on their drape might contribute to the understanding of the virtually as-sessed material and accelerate the selection process of virtually, as well as digitally presented fabrics. For this research the drape coefficient of 13 fabrics, selected based on their drape, was measured with the Cusick drape tester. Images and videos of the fabrics draped on pedestals were presented to an expert tex-tile panel who were asked to define the fabric drape. From these definitions categories, as well as identifying key-words, were derived. During a group session the expert panel evaluated the drape categories and identi-fying key-words. In the next phase an expert user panel, familiar with the assessment of fabrics in a virtual environment, assessed the appropriateness of the categories and identifying key-words which were present-ed along with the fabric drape images and videos. Moreover, both panels judged the stiffness and amount of drape, next to that they indicated similar draping fabrics. The relation between the subjective assessment of drape and the drape coefficient was investigated. The agreement of the user panel with the drape categories defined and evaluated by the textile panel was high. Further, the agreement of the majority of the user panel with the identifying key-words was above 78%. A strong relation was found between the measured drape coefficient and the subjectively assessed stiffness and amount of drape. Additionally, the analysis of the fabrics combined by the panels based on drape simi-larity, as well as the analysis of the drape coefficients, confirms with previous research, that significantly dif-ferent fabrics can have a similar drape. Fabrics can be divided in drape categories based on the way they drape, and the identifying key-words are useful to distinguish between significantly different fabrics with similar fabric drape. Moreover, the cate-gories are related to the drape coefficient.
MULTIFILE
This research aims to obtain more insight in the perception of fabric drape and how fabric drape can be cat-egorized With the current 3D virtual technologies to simulate garments the fashion and clothing industry can speed up work processes, improve accuracy and reduce material consumption in fit, design and sales. Although the interest in 3D technology is increasing, the implementation on a large scale emerges only slowly. At the threshold between physical and virtual fitting the fashion industry faces new challenges and demands re-quiring responses out of rule. The measurement of fabric drape started in the first half of the previous cen-tury, after the introduction of 3D garment simulation fabric drape gained interest from more researchers to obtain information for the virtual drape. Intensive research has been undertaken to define ‘fabric hand’, however, research is limited for the definition of fabric drape. Better understanding of how fabrics drape and how they can be selected based on their drape might contribute to the understanding of the virtually as-sessed material and accelerate the selection process of virtually, as well as digitally presented fabrics. For this research the drape coefficient of 13 fabrics, selected based on their drape, was measured with the Cusick drape tester. Images and videos of the fabrics draped on pedestals were presented to an expert tex-tile panel who were asked to define the fabric drape. From these definitions categories, as well as identifying key-words, were derived. During a group session the expert panel evaluated the drape categories and identi-fying key-words. In the next phase an expert user panel, familiar with the assessment of fabrics in a virtual environment, assessed the appropriateness of the categories and identifying key-words which were present-ed along with the fabric drape images and videos. Moreover, both panels judged the stiffness and amount of drape, next to that they indicated similar draping fabrics. The relation between the subjective assessment of drape and the drape coefficient was investigated. The agreement of the user panel with the drape categories defined and evaluated by the textile panel was high. Further, the agreement of the majority of the user panel with the identifying key-words was above 78%. A strong relation was found between the measured drape coefficient and the subjectively assessed stiffness and amount of drape. Additionally, the analysis of the fabrics combined by the panels based on drape simi-larity, as well as the analysis of the drape coefficients, confirms with previous research, that significantly dif-ferent fabrics can have a similar drape. Fabrics can be divided in drape categories based on the way they drape, and the identifying key-words are useful to distinguish between significantly different fabrics with similar fabric drape. Moreover, the cate-gories are related to the drape coefficient.
MULTIFILE
Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.