Service of SURF
© 2025 SURF
In a rapidly developing labor market, in which some parts of jobs disappear and new parts appear due to technological developments, companies are struggling with defining future-proof job qualifications and describing job profiles that fit the organization’s needs. This is even more applicable to smaller companies with new types of work because they often grow rapidly and cannot hire graduates from existing study programs. In this research project, we undertook in-depth, qualitative research into the five roles of a new profession: social media architect. It has become clear which 21st century skills and motivations are important per role and, above all, how they differ in subcategory and are interpreted by a full-service team in their working methods, in a labor market context, and in the talents of the professional themselves. In a workshop, these “skills” were supplemented through a design-based approach and visualized per team role in flexibly applicable recruitment cards. This research project serves as an example of how to co-create innovative job profiles for the changing labor market. Ellen Sjoer, Petra Biemans. “A design-based (pre)recruitment approach for new professions: defining futureproof job profiles.” Információs Társadalom XX, no. 2 (2020): 84–100. https://dx.doi.org/10.22503/inftars.XX.2020.2.6
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Single-Use Plastics (SUPs) are at the centre of European Union Agenda aiming at reducing the plastic soup with the EU Directive 2019/904. SUPs reduction is pivotal also in the Dutch Government Agenda for the transition to a Circular Economy by 2050. Worldwide the data on SUPs use and disposal are impressive: humans use around 1.2 million plastic bottles per minute; approximately 91% of plastic is not recycled (www.earthday.org/fact-sheet-single-use-plastics/). While centralised processes of waste collection, disposal, and recycling strive to cope with such intense use of SUPs, the opportunities and constraints of establishing a networked grid of facilities enacting processes of SUPs collection and recycling with the active involvement of local community has remained unexplored. The hospitality sector is characterised by a widespread capillary network of small hospitality firms nested in neighbourhoods and rural communities. Our research group works with small hospitality firms, different stakeholders, and other research groups to prompt the transition of the hospitality sector towards a Circular Economy embracing not only the environmental and economic dimensions but also the social dimension. Hence, this project explores the knowledge and network needed to build an innovative pilot allowing to close the plastic loop within a hospitality facility by combining a 3D printing process with social inclusiveness. This will mean generating key technical and legal knowledge as well as a network of strategic experts and stakeholders to be involved in an innovative pilot setting a 3D printing process in a hospitality facility and establishing an active involvement of the local community. Such active involvement of the local inhabitants will be explored as SUPs collectors and end-users of upcycled plastics items realised with the 3D printer, as well as through opportunities of vocational training and job opportunities for citizens distant from the job market.