The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems. The papers starts with a proposition that envisions reconfigurable systems that work together autonomously to create Manufacturing as a Service (MaaS). It introduces a number of problems in this area and shows the requirements for an architecture that can be the main research platform to solve a number of these problems, including the need for safe and flexible system behaviour and the ability to reconfigure with limited interference to other systems within the manufacturing environment. The paper highlights the infrastructure and architecture itself that can support the requirements to solve the mentioned problems in the future. A concept system named Grid Manufacturing is then introduced that shows both the hardware and software systems to handle the challenges. The paper then moves towards the design of the architecture and introduces all systems involved, including the specific hardware platforms that will be controlled by the software platform called REXOS (Reconfigurable EQuipletS Operating System). The design choices are provided that show why it has become a hybrid platform that uses Java Agent Development Framework (JADE) and Robot Operating System (ROS). Finally, to validate REXOS, the performance is measured and discussed, which shows that REXOS can be used as a practical basis for more specific research for robust autonomous reconfigurable systems and application in industry 4.0. This paper shows practical examples of how to successfully combine several technologies that are meant to lead to a faster adoption and a better business case for autonomous and reconfigurable systems in industry.
An efficient and sustainable logistics process is essential for logistics companies to remain competitive and to manage the dynamic demands and service requirements. Specifically, the first- and last-mile hub-to-hub (inter) logistics is one of the most difficult operations to manage due to low volumes, repetitive operation and short-distance transport, and relatively high waiting times. With the advancements in Industry 4.0 technologies (Internet of Things, Big Data, Cloud computing, Artificial Intelligence), the consortium partners expect that the intelligent and connected technology is a viable solution to improve operational efficiency, coordination, and sustainability of this inter-hub logistics. Despite the promising potential, the impact of technology on inter- and intra-hub (inside hub) logistics operations (such as transportation, communication, and planning) is not well-established. The focus of STEERS is to explore the real-life challenges associated with the logistics operation in a small-to-medium size logistics hub and investigate the potential of intelligent and connected technology to address such challenges. This project will investigate the requirements for the application of automated vehicles in inter-hub transportation and simultaneously explore the potential of intelligent inter-hub corridors. Additionally, inter-hub communications will also provide the opportunity to explore their potential impact on the planning and coordination of intra-hub activities, with an explicit focus on the changing role of human planners. It combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen, The University of Twente and Hogeschool Rotterdam), logistics industry partners (Bolk Container Transport and Combi Terminal Twente) and public institutes (XL Business Park, Port of Twente and Regio Twente). The insights obtained in this exploratory study will serve as a foundation for the follow-up RAAK-PRO project, in which real-world demonstrators will be developed and tested inside XL Business Park.
The goal of UPIN is to develop and evaluate a scalable distributed system that enables users to cryptographically verify and easily control the paths through which their data travels through an inter-domain network like the Internet, both in terms of router-to-router hops as well as in terms of router attributes (e.g., their location, operator, security level, and manufacturer). UPIN will thus provide the solution to a very relevant and current problem, namely that it is becoming increasingly opaque for users on the Internet who processes their data (e.g., in terms of service providers their data passes through as well as what jurisdictions apply) and that they have no control over how it is being routed. This is a risk for people’s privacy (e.g., a malicious network compromising a user’s data) as well as for their safety (e.g., an untrusted network disrupting a remote surgery). Motivating examples in which (sensitive) user data typically travels across the Internet without user awareness or control are: - Internet of Things for consumers: sensors such as sleep trackers and light switches that collect information about a user’s physical environment and send it across the Internet to remote services for analysis. - Medical records: health care providers requiring medical information (e.g., health records of patients or remote surgery telemetry) to travel between medical institutions according to specified agreements. - Intelligent transport systems: communication plays a crucial role in future autonomous transportation systems, for instance to avoid freight drones colliding or to ensure smooth passing of trucks through busy urban areas. The UPIN project is novel in three ways: 1. UPIN gives users the ability to control and verify the path that their data takes through the network all the way to the destination endpoint, both in terms of hops and attributes of routers traversed. UPIN accomplishes this by adding and improving remote attestation techniques for on-path routers to existing path verification mechanisms, and by adopting and further developing in-packet path selection directives for control. 2. We develop and simulate data and control plane protocols and router extensions to include the UPIN system in inter-domain networking systems such as IP (e.g., using BGP and segment routing) and emerging systems such as SCION and RINA. 3. We evaluate the scalability and performance of the UPIN system using a multi-site testbed of open programmable P4 routers, which is necessary because UPIN requires novel packet processing functions in the data plane. We validate the system using the earlier motivating examples as use cases. The impact we target is: - Increased trust from users (individuals and organizations) in network services because they are able to verify how their data travels through the network to the destination endpoint and because the UPIN APIs enable novel applications that use these network functions. - More empowered users because they are able to control how their data travels through inter-domain networks, which increases self-determination, both at the level of individual users as well as at the societal level.