Service of SURF
© 2025 SURF
In May 2018, the new Dutch Intelligence and Security Services Act 2017 (Wet op de Inlichtingen- en veiligheidsdiensten, Wiv) will enter into force. It replaces the previous 2002 Act and incorporates many reforms to the information gathering powers of the two intelligence and security services as well as to the accountability and oversight mechanisms. Due to the technologyneutral approach, both the civil and the military intelligence services are now authorized to, for example, intercept communications in bulk, hack third parties, decrypt files, store DNA or use any other future innovative technology. Also, the national security legislation extends the possibilities for the indiscriminate collection of data, and for the processing, storage and analysis thereof. The process leading to the law includes substantial criticism from the various stakeholders involved. Upon publication of this report, an official consultative referendum is being organized on the new act. The aim of this policy brief is to provide an international audience with a comprehensive overview of the most relevant aspects of the act and its context. In addition, there is considerable focus on the checks and balances as well as the bottlenecks of the Dutch intelligence gathering reform. The selection of topics is based on the core issues addressed during the parliamentary debate and on the authors’ insights.
By analysing intelligence-gathering reform legislation this article discusses access to justice for communications interception by the intelligence and security services. In the aftermath of the Snowden revelations, sophisticated oversight systems for bulk communications surveillance are being established across the globe. In the Netherlands prior judicial consent and a binding complaint procedure have been established. However, although checks and balances for targeted communications interference have been created, accountability mechanisms are less equipped to effectively remedy indiscriminate interference. Therefore, within the context of mass communications surveillance programs, access to justice for complainants remains a contentious issue.
MULTIFILE
Het aantal banen neemt toe. Jaarlijks ontstaan er volgens CBS (2019) ongeveer 900 duizend vacatures. Deze keer is de verandering op de arbeidsmarkt niet het resultaat van één enkele factor, maar eerder een combinatie van vijf factoren: snelle technologische vooruitgang, diepgaande veranderingen in gezondheid en demografie, een groeiende economie, toenemende globalisering en belangrijke maatschappelijke veranderingen - die samen een groot deel van wat we als vanzelfsprekend beschouwen, fundamenteel transformeren (Gratton, 2011). Digitalisering en automatisering spelen een grote rol bij deze veranderingen. Er zijn optimistische voorspellingen dat nieuwe technologieën de arbeidsmarkt ten goede komen. Technologie verlaagt bijvoorbeeld de werkdruk. We zouden door technologie zelfs naar een kortere werkweek kunnen en nieuwe banen erbij krijgen, zodat niemand ongewild zonder werk komt te zitten (Ford, 2015; Giang, 2015; Mahdawi, 2017; MGI, 2017). Echter, de angst dat automatisering banen over gaat nemen en er een tekort aan werk gaat ontstaan, is ook een veelgehoorde zorg (Alexis, 2017; Ford, 2015; Giang, 2015; MGI, 2017; WRR. 2013).
Smart city technologies, including artificial intelligence and computer vision, promise to bring a higher quality of life and more efficiently managed cities. However, developers, designers, and professionals working in urban management have started to realize that implementing these technologies poses numerous ethical challenges. Policy papers now call for human and public values in tech development, ethics guidelines for trustworthy A.I., and cities for digital rights. In a democratic society, these technologies should be understandable for citizens (transparency) and open for scrutiny and critique (accountability). When implementing such public values in smart city technologies, professionals face numerous knowledge gaps. Public administrators find it difficult to translate abstract values like transparency into concrete specifications to design new services. In the private sector, developers and designers still lack a ‘design vocabulary’ and exemplary projects that can inspire them to respond to transparency and accountability demands. Finally, both the public and private sectors see a need to include the public in the development of smart city technologies but haven’t found the right methods. This proposal aims to help these professionals to develop an integrated, value-based and multi-stakeholder design approach for the ethical implementation of smart city technologies. It does so by setting up a research-through-design trajectory to develop a prototype for an ethical ‘scan car’, as a concrete and urgent example for the deployment of computer vision and algorithmic governance in public space. Three (practical) knowledge gaps will be addressed. With civil servants at municipalities, we will create methods enabling them to translate public values such as transparency into concrete specifications and evaluation criteria. With designers, we will explore methods and patterns to answer these value-based requirements. Finally, we will further develop methods to engage civil society in this processes.
The value of data in general has become eminent in recent times. Autonomous vehicles and Connected Intelligent Transport Systems (C-ITS), in particular, are rapidly emerging fields that rely a lot on “big data”. Data acquisition has been an important part of automotive research and development for years even before the advent of Internet of Things (IoT). Most datalogging is done using specialized hardware that stores data in proprietary formats on traditional hard drives in PCs or dedicated managed servers. The use of Artificial Intelligence (AI) throughout the world and specifically in the automotive sector is largely reliant on the data for the development of new and reliable technologies. With the advent of IoT technologies, the reliability of data capture could be enhanced and can improve ease of real-time analytics for analysis/development of C-ITS services and Autonomous systems using vehicle data. Data acquisition for C-ITS applications requires putting together several different domains ranging from hardware, software, communication systems, cloud storage/processing, data analytics, legal and privacy aspects. This requires expertise from different domains that small and medium scale businesses usually lack. This project aims at investigating requirements that have to be met in order to collect data from vehicles. Furthermore, this project also aims at laying foundations required for the development of a unified guidelines required to collect data from vehicles. With these guidelines, businesses that intend to use vehicle data for their applications are not only guided on the technical aspects of data collection but also equally understand how data from vehicles could be harvested in a secure, efficient and responsible manner.