Service of SURF
© 2025 SURF
Poster presentation: decentralized gas storage.
The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural Gas resources forecast an increase in the application of Liquefied Natural Gas (LNG), as a means of storage and transportation, which has a high exergy value due to the low temperature. Therefore, we analysed the integration of a decentralized LNG regasification with a CHP (Waste-to-Energy) plant, to determine whether the integration could offer additional operational flexibility for the future energy network with intermittent renewable energy sources, under optimized exergy efficient conditions. We compared the independent system with two systems integrated by means of 1) Organic Rankine Cycle and 2) Stirling Engine using the cold of the LNG, that we analysed using a simplified deterministic model based on the energy hub concept. We use the hourly measured electricity and heat demand patterns for 200 households with 35% of the households producing electricity from PV according to a typical measured solar insolation pattern in The Netherlands. We found that for both systems the decentralized LNG regasification integrated with the W2E plant affects the imbalance of the system for electricity and heat, due to the additional redundant paths to produced electricity. The integration of the systems offers additional operational flexibility depending on the means of integration and its availability to produce additional energy carriers. For our future work, we will extend the model, taking into account the variability and randomness in the different parameters, which may cause significant changes in the performance and reliability of the model.
The increase in renewable energy sources will require an increase in the operational flexibility of the grid, due to the intermittent nature of these sources. This can be achieved for the gas and the electricity grid, which are integrated by means of power-to-gas and vice versa, by applying gas and other energy storages. Because renewables are applied on a decentralized scale level and syngas and biogas are produced at relatively low pressures, we study the application of a decentralized (bio)gas storage system combined withMicro Turbine Technology (MTT), Compressed Air Energy Storage (CAES) and Thermal Energy Storage (TES) units, which are designed to optimize energy efficiency.In this study we answer the following research questions:a. What is the techno-economical feasibilty of applying a decentralized (bio)gas storage with a MTT/CAES/TES system to balance the integrated renewable energy network?b. How should the decentralized (bio)gas storage with MTT/CAES/TES system be designed, so that the energy efficient application in such networks is optimized?Note that:c. We verify the calculations for the small scale MTT unit with measurements on our proof-of-principle set-up of part of the system that includes two MTTs in parallel.Based on wind speed, irradiance patterns and electricity and heat demand patterns for a case of 100 households, we found the optimum dimensions for the decentralized (bio)gas storage based on guaranteed supply. We concluded that a decentralized (bio)gas storage of 85 000 Nm3 was needed to provide the heat demand. LNG was the most energy efficient storage technology for such dimensions.The use of (bio)gas directly in a CHP (P/Q ratio = 2/3) that was mainly heat driven, resulted in a continuous overproduction of electricity due to the dominant heat demand of the 100 households in the Netherlands.This does not leave any room for the increase in the application of PV and wind generators, nor is there a purpose for electricity storage.For that reason we will further investigate the application of a decentralized (bio)gas storage with MTT/CAES/TES as a solution to balance a renewable integrated network. Using an MTT in the system offers a more useful P/Q ratio for households of 1/5.