Service of SURF
© 2025 SURF
Wearable inertial sensors (WIS) facilitate the preservation of the athlete-environment relationship by allowing measurement outside the laboratory. WIS systems should be validated for team sports movements before they are used in sports performance and injury prevention research. The aim of the present study was to investigate the concurrent validity of a wearable inertial sensor system in quantifying joint kinematics during team sport movements. Ten recreationally active participants performed change-of-direction (single-leg deceleration and sidestep cut) and jump-landing (single-leg hop, single-leg crossover hop, and double-leg vertical jump) tasks while motion was recorded by nine inertial sensors (Noraxon MyoMotion, Noraxon USA Inc.) and eight motion capture cameras (Vicon Motion Systems Ltd). Validity of lower-extremity joint kinematics was assessed using measures of agreement (cross-correlation: XCORR) and error (root mean square deviation; and amplitude difference). Excellent agreement (XCORR >0.88) was found for sagittal plane kinematics in all joints and tasks. Highly variable agreement was found for frontal and transverse plane kinematics at the hip and ankle. Errors were relatively high in all planes. In conclusion, the WIS system provides valid estimates of sagittal plane joint kinematics in team sport movements. However, researchers should correct for offsets when comparing absolute joint angles between systems.
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
Knowing firefighters’ locations in a burning building would dramatically improve their safety. In this study from the Saxion Research Centre for Design and Technology in the Firebee project, an algorithm was developed and tested to enhance the estimation of a person’s location, based on inertial measurements combined with measurements of the earth’s magnetic field. The developed algorithm is an extension of the zero velocity update technique. Without any enhancements, the accuracy of the estimation is in the order of several meters after measuring for only a few seconds. With enhancements, the accuracy improved to be within five meters after measuring for ten minutes. Our result demonstrated that it is possible to determine in which room and on which floor a person is after ten minutes. Major improvements were observed in the estimation of the sensor’s height. The results are promising and the following phases of the project focus on improving the solution and on developing the concept into a practically applicable system.
MULTIFILE
Er zijn veel situaties waarin het belangrijk is om de positie en/of de loopbeweging van personen te kunnen meten, zoals voor de brandweer, voor het leger, in de sport of bij revalidatie. In een aantal situaties geldt hierbij de randvoorwaarde dat je geen gebruik kunt maken van bestaande infrastructuren. GPS werkt bijvoorbeeld alleen buiten en is voor veel toepassingen niet nauwkeurig genoeg. Infrastructuur in gebouwen (zoals WiFi) werkt niet altijd bij brand, en bovendien wil je vaak (ambulant) meten in een praktijkomgeving of in een onbekend gebouw, in plaats van in een ?labomgeving?. Een interessant gegeven is dat de afzonderlijke technieken voor het oplossen van bovenstaande problemen wel bestaan, maar dat nog geen enkele partij deze heeft kunnen integreren in een bruikbaar product. Blijkbaar levert de inherente complexiteit van het onderwerp van dergelijke systemen problemen op. In het SaxShoe project onderzoeken Saxion, HvA, NHL, Universiteit Twente en het bedrijfsleven hoe we een schoen-zool systeem kunnen ontwikkelen voor het meten en op afstand monitoren van de locatie en het loopgedrag van de gebruiker in situaties waarbij standaard infrastructuur (GPS, WiFi, camera?s) ontbreekt. In het project wordt een empirische aanpak gehanteerd. Dit op basis van de constatering dat veel zaken in theorie wel zouden moeten werken, maar dat de praktijk weerbarstig is. Door cyclisch een sensorschoen te ontwikkelen worden kennisvragen beantwoord. Deze (deel)vragen betreffen kennisontwikkeling voor nauwkeurige positiebepaling op basis van inertiële navigatie, en gerelateerde vragen rond communicatie, energievoorziening, de verwerking in een schoen en de werking in praktijksituaties. Op basis van gebruikersfeedback wordt het onderzoek continue bijgestuurd (agile development). Om de aanpak concreet te maken richt het project zicht op het ontwikkelen van een brandweerlaars, als middel, niet als doel, maar wel als showcase voor de kennisontwikkeling. De ambitie is het realiseren van de norm van maximaal 10 meter afwijking na 20 minuten lopen. Hiervoor werken in het project topbedrijven die gespecialiseerd zijn in sensortechnologie samen met hogescholen en met bedrijven die gespecialiseerd zijn in de productie van schoenen en zolen. Het project levert inzicht, oplossingen en ontwerpregels op voor de problematiek die speelt bij het ontwerpen van wearables voor het meten van locatie en loopgedrag. Voor de technische bedrijven in het project biedt SaxShoe de mogelijkheid om nieuwe markten te openen voor bestaande technologieën. Voor de eindgebruikers, zoals de brandweer, biedt het concrete oplossingen voor bestaande problemen zoals de veiligheid van hulpverleners in gevaarlijke situaties.