Service of SURF
© 2025 SURF
Over the past decades, various types of permeable pavements have been implemented in different municipalities in the Netherlands in order to improve infiltration capacity in urban areas and therewith being able to better treat stormwater runoff. With initial promising results, this adaptation measure seemed to be the solution for urban flooding due to extreme precipitation.However, in practice, foreseen infiltration capacities were usually not met, often due to unknown reasons. To better understand the functioning of permeable pavements in practice, we have studied - as part of the project Infiltrating Cities - over 100 existing permeable pavement installations in the Netherlands. At each location, infiltration capacity was tested through a full-scale infiltration testing procedure (flooded area about 40 m2) while conditional on-site factors were collected (location, age, type of permeable pavement, street-type, traffic density, vicinity of urban green, regular maintenance regime, etc.). By coupling this information we analyzed how these factors influence the infiltration capacity of permeable pavements in practice, e.g. through accelerated deterioration of infiltration capacity through time. In addition, we evaluated for a selected number of installations, how various types of maintenance may counteract this deterioration, hence improving the infiltration capacity of permeable pavements.
In Eastern Africa, increasing climate variability and changing socioeconomic conditions are exacerbating the frequency and intensity of drought disasters. Droughts pose a severe threat to food security in this region, which is characterized by a large dependency on smallholder rain-fed agriculture and a low level of technological development in the food production systems. Future drought risk will be determined by the adaptation choices made by farmers, yet few drought risk models … incorporate adaptive behavior in the estimation of drought risk. Here, we present an innovative dynamic drought risk adaptation model, ADOPT, to evaluate the factors that influence adaptation decisions and the subsequent adoption of measures, and how this affects drought risk for agricultural production. ADOPT combines socio-hydrological and agent-based modeling approaches by coupling the FAO crop model AquacropOS with a behavioral model capable of simulating different adaptive behavioral theories. In this paper, we compare the protection motivation theory, which describes bounded rationality, with a business-as-usual and an economic rational adaptive behavior. The inclusion of these scenarios serves to evaluate and compare the effect of different assumptions about adaptive behavior on the evolution of drought risk over time. Applied to a semi-arid case in Kenya, ADOPT is parameterized using field data collected from 250 households in the Kitui region and discussions with local decision-makers. The results show that estimations of drought risk and the need for emergency food aid can be improved using an agent-based approach: we show that ignoring individual household characteristics leads to an underestimation of food-aid needs. Moreover, we show that the bounded rational scenario is better able to reflect historic food security, poverty levels, and crop yields. Thus, we demonstrate that the reality of complex human adaptation decisions can best be described assuming bounded rational adaptive behavior; furthermore, an agent-based approach and the choice of adaptation theory matter when quantifying risk and estimating emergency aid needs.
MULTIFILE
We investigate hydrology during a past climate slightly warmer than the present: the last interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models we force hydrological model PCR‐GLOBWB and in turn hydrodynamic model CaMa‐Flood. Compared to preindustrial, annual mean LIG runoff, discharge, and 100‐yr flood volume are considerably larger in the Northern Hemisphere, by 14%, 25%, and 82%, respectively. Anomalies are negative in the Southern Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due to the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges, Irrawaddy, and Pearl and lower for the Mississippi, Saint Lawrence, Amazon, Paraná, Orange, Zambesi, Danube, and Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.
Urban open space has a huge impact on human health, well-being and urban ecosystems. One of the open spaces where the environmental and ecological challenges of cities manifest the most is the urban riverfront, often characterised by fragmented land use, lack of accessibility, heavy riverside vehicular traffic, and extreme degradation of river hydrology and ecology. More often than not, the current spatial design of the riverfront hinders rather than supports the delivery of ecosystem services and, in consequence, its potential to improve the health and well-being of urban inhabitants is diminished. Hence, the design of riverside open spaces is crucial. Urban and landscape design in those spaces requires instruments that can aid designers, planners, decision-makers and stakeholders in devising spatial interventions that integrate complex environmental and ecological goals in high quality public space design. By recognising the multiple environmental and ecological benefits of green space and water in the city, the project “I surf” applies a set of four design instruments, namely the Connector, the Sponge, the Integrator, and the Scaler. I surf is a three-phased project that tests, validates and updates these instruments through a design-driven research methodology involving two design workshops and expert meetings addressing three different riverside urban spaces in Amsterdam: in the Ij waterfront, along River Amstel, and on a site located on the canal network. The project concludes with an updated and transferrable instrument set available for urban and landscape design applications in Amsterdam and in other Dutch cities crossed by rivers.