Service of SURF
© 2025 SURF
This review is the first step in a long-term research project exploring how social robotics and AI-generated content can contribute to the creative experiences of older adults, with a focus on collaborative drawing and painting. We systematically searched and selected literature on human-robot co-creativity, and analyzed articles to identify methods and strategies for researching co-creative robotics. We found that none of the studies involved older adults, which shows the gap in the literature for this often involved participant group in robotics research. The analyzed literature provides valuable insights into the design of human-robot co-creativity and informs a research agenda to further investigate the topic with older adults. We argue that future research should focus on ecological and developmental perspectives on creativity, on how system behavior can be aligned with the values of older adults, and on the system structures that support this best.
The challenges facing primary education are significant: a growing teacher shortage, relatively high administrative burdens that contribute to work-related stress and an increasing diversity of children in the classroom. A promising new technology that can help teachers and children meet these challenges is the social robot. These physical robots often use artificial intelligence and can communicate with children by taking on social roles, such as that of a fellow classmate or teaching assistant. Previous research shows that the use of social robots can lead to better results in several ways than when traditional educational technologies are applied. However, social robots not only bring opportunities but also lead to new ethical questions. In my PhD research, I investigated the moral considerations of different stakeholders, such as parents and teachers, to create the first guideline for the responsible design and use of social robots for primary education. Various research methods were used for this study. First of all, a large, international literature study was carried out on the advantages and disadvantages of social robots, in which 256 studies were ultimately analysed. Focus group sessions were then held with stakeholders: a total of 118 parents of primary school children, representatives of the robotics industry, educational policymakers, government education advisors, teachers and primary school children contributed. Based on the insights from the literature review and the focus group sessions, a questionnaire was drawn up and distributed to all stakeholders. Based on 515 responses, we then classified stakeholder moral considerations. In the last study, based on in-depth interviews with teachers who used robots in their daily teaching and who supervised the child-robot interaction of >2500 unique children, we studied the influence of social robots on children's social-emotional development. Our research shows that social robots can have advantages and disadvantages for primary education. The diversity of disadvantages makes the responsible implementation of robots complex. However, overall, despite their concerns, all stakeholder groups viewed social robots as a potentially valuable tool. Many stakeholders are concerned about the possible negative effect of robots on children's social-emotional development. Our research shows that social robots currently do not seem to harm children's social-emotional development when used responsibly. However, some children seem to be more sensitive to excessive attachment to robots. Our research also shows that how people think about robots is influenced by several factors. For example, low-income stakeholders have a more sceptical attitude towards social robots in education. Other factors, such as age and level of education, were also strong predictors of the moral considerations of stakeholders. This research has resulted in a guideline for the responsible use of social robots as teaching assistants, which can be used by primary schools and robot builders. The guideline provides schools with tools, such as involving parents in advance and using robots to encourage human contact. School administrators are also given insight into possible reactions from parents and other parties involved. The guideline also offers guidelines for safeguarding privacy, such as data minimization and improving the technical infrastructure of schools and robots; which still often leaves much to be desired. In short, the findings from this thesis provide a solid stepping stone for schools, robot designers, programmers and engineers to develop and use social robots in education in a morally responsible manner. This research has thus paved the way for more research into robots as assistive technology in primary education.
LINK
Several recent works in human-robot-interaction (HRI) have begun to highlight the importance of the replication crisis and open science practices for our field. Yet, suggestions and recommendations tailored to child-robot-interaction (CRI) research, which poses it's own additional set of challenges, remain limited. There is also an increased need within both HRI and CRI for inter and cross-disciplinary collaborations, where input from multiple different domains can contribute to better research outcomes. Consequently, this workshop aims to facilitate discussions between researchers from diverse disciplines within CRI. The workshop will open with a panel discussion between CRI researchers from different disciplines, followed by 3-minute flash talks of the accepted submissions. The second half of the workshop will consist of breakout group discussions, where both senior and junior academics from different disciplines can share their experiences of conducting CRI research. Through this workshop we hope to create a common ground for addressing shared challenges in CRI, as well as identify a set of possible solutions going forward.
LINK
With the help of sensors that made data collection and processing possible, many products around us have become “smarter”. The situation that our car, refrigerator, or umbrella communicating with us and each other is no longer a future scenario; it is increasingly a shared reality. There are good examples of such connectedness such as lifestyle monitoring of elderly persons or waste management in a smart city. Yet, many other smart products are designed just for the sake of embedding a chip in something without thinking through what kind of value they add everyday life. In other words, the design of these systems have mainly been driven by technology until now and little studies have been carried out on how the design of such systems helps citizens to improve or maintain the quality of their individual and collective lives. The CREATE-IT research center creates new solutions and methodologies in “digital design” that contribute to the quality of life of citizens. Correspondingly, this proposal focuses on one type of digital design—smart products—and investigate the concept of empowerment in relation to the design of smart products. In particular, the proposal aims to develop a model with its supplementary tools and methods for designing such products better. By following a research-through-design methodology, the proposal intends to offer a critical understanding on designing smart products. Along with its theoretical contribution, the proposal will also aid the students of ICT and design, and professionals such as designers and engineers to create smart products that will empower people and the industry to develop products grounded in a clear user experience and business model.