Een verpleegkundige die evidence-based handelt, maakt gebruik van zowel wetenschappelijk onderzoek als zijn eigen professionele ervaringskennis, gecombineerd met de kennis en voorkeuren van de patiënt. Een gangbare benadering om dit evidence-based handelen in de praktijk te krijgen, is het ontwikkelen van een richtlijn om deze vervolgens in de gezondheidszorg te implementeren. Hoewel deze werkwijze gangbaar is, is ze slechts beperkt succesvol. Inmiddels is er beginnend bewijs dat cultuur en leiderschap sleutelelementen zijn bij het implementeren van richtlijnen, zodat er meer nodig is om professioneel gedrag te veranderen dan de professional ‘bloot stellen’ aan een richtlijn. Een dergelijke gedragsverandering is een complex proces, omdat dit handelen onderhevig is aan zowel intrinsieke (persoonsgebonden) als extrinsieke (contextgebonden) factoren.
LINK
Een verpleegkundige die evidence-based handelt, maakt gebruik van zowel wetenschappelijk onderzoek als zijn eigen professionele ervaringskennis, gecombineerd met de kennis en voorkeuren van de patiënt. Een gangbare benadering om dit evidence-based handelen in de praktijk te krijgen, is het ontwikkelen van een richtlijn om deze vervolgens in de gezondheidszorg te implementeren. Hoewel deze werkwijze gangbaar is, is ze slechts beperkt succesvol. Inmiddels is er beginnend bewijs dat cultuur en leiderschap sleutelelementen zijn bij het implementeren van richtlijnen, zodat er meer nodig is om professioneel gedrag te veranderen dan de professional ‘bloot stellen’ aan een richtlijn. Een dergelijke gedragsverandering is een complex proces, omdat dit handelen onderhevig is aan zowel intrinsieke (persoonsgebonden) als extrinsieke (contextgebonden) factoren.
LINK
Dit artikel schetst een overzicht van de huidige stand van zaken omtrent beweging en zitgedrag bij basisschoolleerlingen in Nederland gebaseerd op de combinatie van GPS en accelerometrie. Tevens wordt aan de hand van een praktijkinterventie suggesties gedaan hoe beweegstimulering bij basisschoolleerlingen zou kunnen worden verbeterd door een contextuele blik toe te passen die aansluit bij het gedrag van basisschoolleerlingen.
De groeiende wereldbevolking zorgt voor noodzaak tot optimaler gebruik van landbouwgrond. De innovatie van de eerste elektrische tractor door Boessenkool B.V. zorgt voor minder rijsporen en daarmee een effectiever landbouw gebruik. Tevens creëert deze elektrificatie de mogelijkheid tot volcontinue automatische landbouw. De in ontwikkeling zijnde landbouw-drone van Drone4Agro B.V. laat geen enkel rijspoor achter en heeft de autonome landbouw tot doel! Saxion, als kennisontwikkelaar van systems engineering en modulaire robotica, en bovengenoemde partners hebben elkaar gevonden tijdens gesprekken over het drone test centrum. Saxion is ook aangesloten bij de SMART Industry agenda Boost van Oost Nederland en mede-oprichter van de netwerkorganisatie LEO Robotics. De centrale kennisvraagstelling luidt: “Is het mogelijk om een koppeling van een autonome drone met een oplaadstation te maken, waarbij de drone een autonome landingsprocedure gebruikt?” Tevens wordt gekeken naar welke kennisvragen opgelost moeten worden om te komen tot (vol‑)automatische landbouwbewerkingen. De autonome besturing en toekomstige volautomatische landbouwbewerkingen openen internationaal de mogelijkheden tot autonome landbouw op grote schaal en voor Saxion tot een duurzame investering in de kenniskring. De technische uitdaging zit hem in de overgang van de GPS gecontroleerde besturing naar de automatische landing/koppelingsprocedure, waarbij een besturingscontrol overdracht moet plaats vinden. Tevens is de technische uitdaging om de besturing zodanig generiek en modulair op te zetten dat het hardware (grond of luchtrobot) onafhankelijk is. De kennis van de besturingen zal gedeeld worden om te komen tot een technische doorontwikkeling van de autonome besturing. Middels de kennisontwikkeling op gebied van autonome besturing en demonstratiemodellen van de luchtrobot en eventueel grondrobot wordt het proof-of-concept aangetoond. Middels stages en afstudeeropdrachten zal geprobeerd worden de kennis te implementeren in de prototypes bij de bedrijven. Middels de bewezen systems engineeringsmethodiek “Het V-model” zullen de functionele klantenwensen t.a.v. de landbouwbewerkingen worden vertaald naar de kennisvragen, mogelijke technische oplossingen en eventuele vervolgprojecten.
In de land- en tuinbouwsector worden UAV’s gebruikt om op basis van sensorwaarnemingen telers adviezen te geven om de teelt te optimaliseren. De buitenteelt is verder in de ontwikkeling en het gebruik van UAV’s dan de binnenteelt. In de buitenteelt kunnen drones autonoom vliegen via een vooraf ingestelde route m.b.v. GPS-waypoint. Het is niet mogelijk om deze GPS-techniek toe te passen in de bedekte teelten i.v.m. onvoldoende GPS-signaal in de kassen. Daarnaast wordt er in de kas hinder ondervonden van verschillende obstakels, zoals gewasdraden, gewaswagens en personeel. Kortom er zijn grote verschillen tussen binnen- en buitenteelt op dit gebied. De uitdaging is om een UAV autonoom te laten navigeren in de binnenteelt. Het idee achter dit project is om een vooronderzoek uit te voeren naar de mogelijkheden om drones autonoom te laten navigeren in de glastuinbouw. Indien dit mogelijk is kunnen hyperspectrale camera’s die momenteel worden gebruikt in de open teelten ook toegepast worden in de binnenteelt. De Twirre architectuur biedt een goed uitgangspunt om het autonoom vliegen met drones in een kas te ontwikkelen. De projectpartners hebben met dit KIEM project de volgende doelstellingen: • Inventariseren welke sensoren gebruikt kunnen worden om in een kas de positie van een drone te bepalen, • Inventariseren welke sensoren gebruikt kunnen worden om in een kas obstakels te kunnen detecteren die ontweken moeten worden • keuzes maken voor positie- en antibots-sensoren, deze integreren in de Twirre architectuur, • een drone met de uitgebreide Twirre architectuur testen in een kas, de positie nauwkeurigheid te meten en de botspreventie te testen, • de beelden van de camera worden op basis van positie informatie en standhoekinformatie van de camera aan elkaar gestitcht tot een grote foto die de hele kas beslaat, • daarmee de basis leggen voor een vervolgproject gericht op het ontwikkelen van een beslissingsondersteunend platform dat op basis van sensorwaarnemingen de teler adviezen geeft om zijn teelt te optimaliseren.
Voor zowel de jaarcijfers als de leverbetrouwbaarheid is het noodzakelijk om voorraad in een magazijn te tellen. Vaak gebeurt dit periodiek. Een populair fenomeen is Cycle Counting, dit betekent dat alle voorraad (op een gedefinieerd moment) wordt geteld, bijvoorbeeld elke 90 dagen. Het tellen van voorraad wordt handmatig uitgevoerd door medewerkers. De medewerkers worden gestuurd naar een locatie in het magazijn die minder dan 90 dagen geleden is geteld, gevraagd wordt of deze pallet nog op de locatie aanwezig is en wat het aantal stuks is. Het idee is om dit proces te automatiseren met een drone. De drone moet in staat zijn om autonoom in een gangpad te navigeren en opnames te maken van de voorraad. Vervolgens kunnen deze beelden geanalyseerd worden en de juiste locatie aan het juiste palletnummer worden gelinkt. Ook zouden lege locaties herkend kunnen worden om vervolgens te controleren of deze overeenstemmen met data uit het voorraadbeheersysteem. Autonoom navigeren met een drone die buiten vliegt op basis van GPS is een commodity. Een drone autonoom indoor te laten navigeren in een GPS-deprived omgeving is op zich al een uitdaging. Om echter van de toepassing een commercieel succes te maken moet dit een zo goedkoop mogelijke drone zijn waar, behalve de camera, zo min mogelijk extra sensoren aan worden toegevoegd. Het idee achter dit project is om een vooronderzoek uit te voeren naar de mogelijkheden om drones autonoom te laten navigeren in magazijnen. Indien dit mogelijk is kan verder onderzoek plaats vinden hoe met behulp van drones Cycle Counting geautomatiseerd kan worden. De Twirre architectuur biedt een goed uitgangspunt om het autonoom vliegen met drones in een magazijn te ontwikkelen. De projectpartners hebben met dit KIEM project de volgende doelstellingen: • onderzoeken of visuele markers in combinatie met een camera gebruikt kunnen worden om in een magazijn de positie van een drone te bepalen; • indien nodig inventariseren welke extra sensoren gebruikt kunnen worden om in een magazijn de positie van een drone te bepalen; • onderzoeken of door alleen van de camerasensor gebruik te maken in een magazijn obstakels kunnen worden gedetecteerd die ontweken moeten worden; • indien nodig inventariseren welke sensoren gebruikt kunnen worden om in een magazijn obstakels te kunnen detecteren die ontweken moeten worden; • keuzes maken voor positie- en antibots-sensoren, deze integreren in de Twirre architectuur; • een drone met de uitgebreide Twirre architectuur testen in een magazijn, autonoom door de gangen in het magazijn te vliegen, de positienauwkeurigheid te bepalen en de botspreventie te testen; • daarmee de basis leggen voor een vervolgproject gericht op het ontwikkelen van een platform dat op basis van een autonoom vliegende drone Cycle Counting kan uitvoeren.