Service of SURF
© 2025 SURF
Dit proefschrift presenteert twee theoretische kaders voor het ontwerpen van games en beschrijft hoe game designers deze kunnen inzetten om het game ontwerpproces te stroomlijnen. Er bestaan op dit moment meerdere ontwerptheorie¨en voor games, maar geen enkele kan rekenen op een breed draagvlak binnen de game industrie. Vooral academische ontwerptheorie¨en hebben regelmatig een slechte reputatie. Het eerste kader dat game designers inzicht biedt in spelregels en hun werking heet Machinations en maakt gebruik van dynamische, interactieve diagrammen. Het tweede theoretische kader van dit proefschrift, Mission/Space, richt zich op level-ontwerp en spelmechanismen die de voortgang van een speler bepalen. In tegenstelling tot bestaande modellen voor level-ontwerp, bouwt Mission/Space voort op het idee dat er in een level twee verschillende structuren bestaan. Mission-diagrammen worden gebruikt om de structuur van taken en uitdagingen voor de speler te formaliseren, terwijl space-diagrammen de ruimtelijke constructie formaliseren. Beide constructies zijn aan elkaar gerelateerd, maar zijn niet hetzelfde. De verschillende wijzen waarop missies geprojecteerd kunnen worden op een bepaalde ruimte speelt uiteindelijk een belangrijke rol in de totstandkoming van de spelervaring.
Using game-based learning (GBL) has a proven potential to be an effective didactical method but it is not easy to implement in practice. Teachers find e.g. difficult to match a particular game dynamics and the curricular goals or to connect with the pedagogical models of particular games.In order to support student-teachers to develop pedagogical knowledge and skills to effectively apply this method we are developing a course about Game Based Pedagogy (GBP) for the teacher education program. This project is a Teaching Fellows Comenius (see (https://www.nro.nl/en/onderzoeksprogrammas/comeniusprogramma/toegekende-projecten).The development and implementation of the course follows a co-creation process in an interdisciplinary team involving high-school teachers, teacher educators and the Smart Education lab for Applied AI.In this workshop we present our first prototype of the course and invite the participants, through hands-on activities to explore some of the games, materials and examples that we developed. This workshop is intended for high school teachers, teacher educators and anyone who is interested in integrating Game-Based Pedagogy into practice.
This study furthers game-based learning for circular business model innovation (CBMI), the complex, dynamic process of designing business models according to the circular economy principles. The study explores how game-play in an educational setting affects learning progress on the level of business model elements and from the perspective of six learning categories. We experimented with two student groups using our game education package Re-Organise. All students first studied a reader and a game role description and then filled out a circular business model canvas and a learning reflection. The first group, i.e., the game group, updated the canvas and the reflection in an interactive tutorial after gameplay. The control group submitted their updated canvas and reflection directly after the interactive tutorial without playing the game. The results were analyzed using text-mining and qualitative methods such as word co-occurrence and sentiment polarity. The game group created richer business models (using more waste processing technologies) and reflections with stronger sentiments toward the learning experience. Our detailed study results (i.e., per business model element and learning category) enhance understanding of game-based learning for circular business model innovation while providing directions for improving serious games and accompanying educational packages.
MULTIFILE
The presented research project will address parasocial interaction (PSI) directed towards non-player characters (NPCs) within video games. As first described by Horton and Wohl in 1956, the investigation of PSI has been predominantly limited to the context of linear media. Consequently, a significant research gap has emerged, prompting the need for this study. This research endeavors to bridge this gap by conducting multiple studies that delve into different aspects of a character's presence that seem to affect PSI. For example, factors such as obtrusiveness and persistence will be investigated due to their potential influence on the strength of PSI (Hartmann, Schramm, & Klimmt, 2004). Furthermore, the inquiry extends to exploring the collective impact of a group of NPCs on PSI dynamics. To achieve these objectives, the research will employ research through design methods, involving iterative modifications to the NPCs across various test setups. A game-based research environment will be created for participant exposure, leveraging the video game RimWorld (Ludeon Studios, 2018) as a foundational framework that can be adapted as necessary. Employing a quantitative approach, the studies will document the impact different aspects of a character’s presence have on the strength of PSI observed. The outcomes of this research endeavor will be disseminated among fellow game developers through artistic interventions, such as, for example, game jams. This approach seeks to not only contribute to the scholarly understanding of PSI but also offer practical insights in the context of game development.
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.