Service of SURF
© 2025 SURF
Background The gait modification strategies Trunk Lean and Medial Thrust have been shown to reduce the external knee adduction moment (EKAM) in patients with knee osteoarthritis which could contribute to reduced progression of the disease. Which strategy is most optimal differs between individuals, but the underlying mechanism that causes this remains unknown. Research question Which gait parameters determine the optimal gait modification strategy for individual patients with knee osteoarthritis? Methods Forty-seven participants with symptomatic medial knee osteoarthritis underwent 3-dimensional motion analysis during comfortable gait and with two gait modification strategies: Medial Thrust and Trunk Lean. Kinematic and kinetic variables were calculated. Participants were then categorized into one of the two subgroups, based on the modification strategy that reduced the EKAM the most for them. Multiple logistic regression analysis with backward elimination was used to investigate the predictive nature of dynamic parameters obtained during comfortable walking on the optimal modification gait strategy. Results For 68.1 % of the participants, Trunk Lean was the optimal strategy in reducing the EKAM. Baseline characteristics, kinematics and kinetics did not differ significantly between subgroups during comfortable walking. Changes to frontal trunk and tibia angles correlated significantly with EKAM reduction during the Trunk Lean and Medial Thrust strategies, respectively. Regression analysis showed that MT is likely optimal when the frontal tibia angle range of motion and peak knee flexion angle in early stance during comfortable walking are high (R2Nagelkerke = 0.12). Significance Our regression model based solely on kinematic parameters from comfortable walking contained characteristics of the frontal tibia angle and knee flexion angle. As the model explains only 12.3 % of variance, clinical application does not seem feasible. Direct assessment of kinetics seems to be the most optimal strategy for selecting the most optimal gait modification strategy for individual patients with knee osteoarthritis.
MULTIFILE
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
Objective: To determine (1) if Medial Thrust or Trunk Lean reduces the knee adduction moment (EKAM) the most during gait in patients with medial knee osteoarthritis, (2) if the best overall strategy is the most effective for each patient and (3) if these strategies affect ankle and hip kinetics. Design: Thirty patients with symptomatic medial knee osteoarthritis underwent 3-dimensional gait analysis. Participants received verbal instructions on two gait strategies (Trunk Lean and Medial Thrust) in randomized order after comfortable walking was recorded. The peaks and impulse of the EKAM and strategy-specific kinematic and kinetic variables were calculated for all conditions. Results: Early stance EKAM peak was significantly reduced during Medial Thrust (29%). During Trunk Lean, early and late stance EKAM peak and EKAM impulse reduced significantly (38%, 21% and 25%, respectively). In 79% of the subjects, the Trunk Lean condition was significantly more effective in reducing EKAM peak than Medial Thrust. Peak ankle dorsi and plantar flexion, knee flexion and hip extension and adduction moments were not significantly increased. Conclusions: Medial Thrust and Trunk Lean reduced the EKAM during gait in patients with knee osteoarthritis. Individual selection of the most effective gait modification strategy seems vital to optimally reduce dynamic knee loading during gait. No detrimental effects on external ankle and hip moments or knee flexion moments were found for these conditions.