Service of SURF
© 2025 SURF
Boekbespreking van "gezondheidspsychologie voor de fysiotherapeut" door P. van Burken en J. Swank.
Hoewel fysiotherapeuten in toenemende mate erkennen dat psychosociale factoren een herstelbelemmerende factor kunnen vormen, vinden ze het vaak lastig om met deze factoren om te gaan. Het herkennen, bespreekbaar maken en mogelijk inspelen op belevings-, gedragsaspecten en levensomstandigheden van de patiknt wordt nog niet door iedere fysiotherapeut in voldoende mate beheerst. Dit is echter wel noodzakelijk om methodisch verantwoord te kunnen handelen. De leden van de redactie van Gezondheidspsychologie voor de fysiotherapeut hebben een relevante selectie gemaakt uit het buitengewoon boeiende en sterk groeiende kennisveld van de gezondheidspsychologie. Het boek helpt om met bovengenoemde problematiek om te gaan, zowel bij de analyse als het beonvloeden van het gezondheidsprobleem. Het biedt compacte, praktijkgerichte informatie die relevant is voor iedere fysiotherapeut.
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Artrose is in Nederland de snelst groeiende chronische aandoening, waarbij de knie het meest vaak is aangedaan. Mensen met knieartrose ervaren forse beperkingen in het dagelijks functioneren. Mensen met knieartrose ervaren soms pijn en stijfheid in het kniegewricht als gevolg van herhaalde lokale overbelasting van de aangedane regio in de knie. De geadviseerde fysiotherapeutische behandeling voor knieartrose bestaat uit informeren, leefstijladviezen en oefentherapie, waarin het aanleren van een minder belastend looppatroon een rol speelt. Binnen de behandeling zijn therapietrouw en zelfmanagement, zoals bij elke chronische aandoening, zeer belangrijk en wordt veelal gevraagd dat men in de thuisomgeving oefentherapie uitvoert. Uit diverse studies blijkt dat therapietrouw veelal laag is bij deze groep. Dat beïnvloedt de behandeluitkomsten negatief, gezien de effectiviteit van fysiotherapeutische zorg is voor een groot deel afhankelijk van de mate van therapietrouw. Om de behandeluitkomsten te verbeteren is het belangrijk om therapietrouw en zelfmanagement te vergroten en patiënten thuis aan de slag gaan met beweegadviezen. Daarbij kan real-time feedback op het looppatroon, in de relevante context, in het dagelijks leven, patiënten helpen om hun looppatroon aan te passen. Daarmee zou behandeling van artrose-gerelateerde klachten in potentie effectiever en efficiënter ingericht kunnen worden. Binnen dit KIEM voorstel verkennen we als eerste welke gebruikerseisen en -wensen er bestaan ten aanzien van real-time feedback op het looppatroon, en onderzoeken we of het haalbaar is om met behulp van het dragen van een sensor om gunstige, en ongunstige looppatronen van elkaar te onderscheiden.