Service of SURF
© 2025 SURF
Objective: To predict mortality with the Tilburg Frailty Indicator (TFI) in a sample of community-dwelling older people, using a follow-up of 7 years. Setting and Participants: 479 Dutch community-dwelling people aged 75 years or older. Measurements: The TFI, a self-report questionnaire, was used to collect data about total, physical, psychological, and social frailty. The municipality of Roosendaal (a town in the Netherlands) provided the mortality dates. Conclusions and Implications: This study has shown the predictive validity of the TFI for mortality in community-dwelling older people. Our study demonstrated that physical and psychological frailty predicted mortality. Of the individual TFI components, difficulty in walking consistently predicted mortality. For identifying frailty, using the integral instrument is recommended because total, physical, psychological, and social frailty and its components have proven their value in predicting adverse outcomes of frailty, for example, increase in health care use and a lower quality of life.
MULTIFILE
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
The aim of this study was to assess the predictive ability of the frailty phenotype (FP), Groningen Frailty Indicator (GFI), Tilburg Frailty Indicator (TFI) and frailty index (FI) for the outcomes mortality, hospitalization and increase in dependency in (instrumental) activities of daily living ((I)ADL) among older persons. This prospective cohort study with 2-year follow-up included 2420 Dutch community-dwelling older people (65+, mean age 76.3±6.6 years, 39.5% male) who were pre-frail or frail according to the FP. Mortality data were obtained from Statistics Netherlands. All other data were self-reported. Area under the receiver operating characteristic curves (AUC) was calculated for each frailty instrument and outcome measure. The prevalence of frailty, sensitivity and specifcity were calculated using cutoff values proposed by the developers and cutoff values one above and one below the proposed ones (0.05 for FI). All frailty instruments poorly predicted mortality, hospitalization and (I)ADL dependency (AUCs between 0.62–0.65, 0.59–0.63 and 0.60–0.64, respectively). Prevalence estimates of frailty in this population varied between 22.2% (FP) and 64.8% (TFI). The FP and FI showed higher levels of specifcity, whereas sensitivity was higher for the GFI and TFI. Using a different cutoff point considerably changed the prevalence, sensitivity and specifcity. In conclusion, the predictive ability of the FP, GFI, TFI and FI was poor for all outcomes in a population of pre-frail and frail community-dwelling older people. The FP and the FI showed higher values of specifcity, whereas sensitivity was higher for the GFI and TFI.