Service of SURF
© 2025 SURF
Force transmission across the wrist during a grasping maneuver of the hand was simulated for three children with juvenile idiopathic arthritis (JIA) and for one healthy age-matched child. Joint reaction forces were estimated using a series of springs between articulating bones. This method (i.e., rigid body spring modeling) has proven useful for examining loading profiles for normally aligned wrists. A novel method (i.e., sliding rigid body spring modeling) designed specifically for studying joint reaction forces of the malaligned JIA wrist is presented in this paper. Loading profiles across the wrist for the unimpaired child were similar using both spring modeling methods. However, the traditional fixed-end method failed to converge to a solution for one of the JIA subjects indicating the sliding model may be more suitable for investigating loading profiles of the malaligned wrist. The results of this study suggest that a larger proportion of force is transferred through the ulno-carpal joint of the JIA wrist than for healthy subjects, with a less than normal proportion of force transferred through the radio-carpal joint. In addition, the ulnar directed forces along the shear axis defined in this study were greater for all three JIA children compared to values for the healthy child. These observations are what were hypothesized for an individual with JIA of the wrist.
Intergenerational continuity in family behaviors partly results from socialization processes in the parental home. However, socialization is a multidimensional process. This article tests hypotheses about the relative importance of value transmission and modeling in explaining expectations of adolescence concerning the timing of leaving home, and entry into cohabitation, marriage, and parenthood. Structural equation modeling on multiactor data from over 1,000 parent–adolescent child couples in the Netherlands is used to test hypotheses. Results suggest that, in general, both value transmission and modeling are important predictors of adolescents’ expectations concerning the timing of major family events. Moreover, no differences between mothers and fathers and between boys and girls are observed in the strength of the intergenerational relationships studied.
This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.