Service of SURF
© 2025 SURF
Psoriasis (Pso) is a chronic inflammatory skin disease, and up to 30% of Pso patients develop psoriatic arthritis (PsA), which can lead to irreversible joint damage. Early detection of PsA in Pso patients is crucial for timely treatment but difficult for dermatologists to implement. We, therefore, aimed to find disease-specific immune profiles, discriminating Pso from PsA patients, possibly facilitating the correct identification of Pso patients in need of referral to a rheumatology clinic. The phenotypes of peripheral blood immune cells of consecutive Pso and PsA patients were analyzed, and disease-specific immune profiles were identified via a machine learning approach. This approach resulted in a random forest classification model capable of distinguishing PsA from Pso (mean AUC = 0.95). Key PsA-classifying cell subsets selected included increased proportions ofdifferentiated CD4+CD196+CD183-CD194+ and CD4+CD196-CD183-CD194+ T-cells and reduced proportions of CD196+ and CD197+ monocytes, memory CD4+ and CD8+ T-cell subsets and CD4+ regulatory T-cells. Within PsA, joint scores showed an association with memory CD8+CD45RACD197- effector T-cells and CD197+ monocytes. To conclude, through the integration of in-depth flow cytometry and machine learning, we identified an immune cell profile discriminating PsA from Pso. This immune profile may aid in timely diagnosing PsA in Pso.
MULTIFILE
From Pubmed: " BACKGROUND: Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. AIM: Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. METHODS: Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. RESULTS: Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. CONCLUSION: We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model. Although similar allergen-specific antibody patterns were observed, differences in T cell and cytokine responses were shown. Whether these findings are related to a different mechanism of AIT in CMA and PNA needs to be elucidated."
MULTIFILE
Water treatment companies are more and more interested in chemical-free water treatment. This is a solution that might not only decrease costs of chemicals, but also decrease possible formation of by-products and contribute to decreasing the introduction of emerging contaminants in the environment. A possible route for this is the use of magnetic fields based treatment. Magnetic fields exist around us (our planet is surrounded by such fields) but are not broadly used in water treatment. A reason for this situation isthe fact that water treatment is a rather traditional market and magnetic treatment, conversely, a rather controversial and (still) not completely understood. Even with such resistance, recently it has been shown that magnetic fields applied to drinking water resulted in significant structural change of its microbiome [1]. This community structural change was clearly detected with a newly developed flow cytometry method, where the phenotypic characteristics of the entire microbial community could be analysed instantly [2-9]. Lab-scale batch experiments have shown that magnetic fields can selectively boost the growth of smaller bacteria [1][3] and indicated as a next step that the same principle could be addressed in pilot scale tests. ISusMag is structured to apply the robust and instant flow cytometry method to examine the effect of magnetic fields on drinking water at pilot scale under realistic field conditions. For this purpose, groundwater will be evenly distributed into two (pipe)lines of the same length: one will be magnetically treated, and one will be used as control. Samples will be taken at the end of the two pipes for flow cytometry examination. Measurement results can help drinking water companies to understand whether a magnetic treatment is an alternative to control the growth of pathogenic bacteria instead of classical chemical treatment (disinfection).