Background: In team handball an anterior cruciate ligament (ACL) injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing the athletes to land safer. Video feedback is an effective way to provide feedback although little is known about its influence on landing technique in sport-specific situations. Objective: To test the effectiveness of a video overlay feedback method on landing technique in elite handball players. Method: Sixteen elite female handball players were assigned to a Control or Video Group. Both groups performed jump shots in a pre-test, two training sessions (TR1 & TR2) and a post-test. The Video Group received video feedback of an expert model with an overlay of their own jump shots in TR1 and TR2 whilst the Control Group did not. Main outcome measures were sagittal ankle, knee and hip angles during initial contact (IC), maximum (MAX) and range of motion (ROM), in addition to the Landing Error Scoring System (LESS) score. One 2x4 repeated measures ANOVA was conducted to analyze group, time and interaction effects of all kinematic outcome measures and the LESS score. Results: The Video Group displayed significant improvement in knee and hip flexion at IC, MAX and ROM. In addition, MAX ankle flexion and their LESS score improved an average of 8.1 in the pre-test to 4.0 in the post-test. When considering performance variables, no differences between Control Group and Video Group were found in shot accuracy or vertical jump height, whilst horizontal jump distance in the Video Group became greater over time. Conclusion: Overlay visual feedback is an effective method to improve landing kinematics during a sport-specific jump shot. Further research is now warranted to determine the long-term effects and transfer to training and game situations.
Background: In team handball an anterior cruciate ligament (ACL) injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing the athletes to land safer. Video feedback is an effective way to provide feedback although little is known about its influence on landing technique in sport-specific situations. Objective: To test the effectiveness of a video overlay feedback method on landing technique in elite handball players. Method: Sixteen elite female handball players were assigned to a Control or Video Group. Both groups performed jump shots in a pre-test, two training sessions (TR1 & TR2) and a post-test. The Video Group received video feedback of an expert model with an overlay of their own jump shots in TR1 and TR2 whilst the Control Group did not. Main outcome measures were sagittal ankle, knee and hip angles during initial contact (IC), maximum (MAX) and range of motion (ROM), in addition to the Landing Error Scoring System (LESS) score. One 2x4 repeated measures ANOVA was conducted to analyze group, time and interaction effects of all kinematic outcome measures and the LESS score. Results: The Video Group displayed significant improvement in knee and hip flexion at IC, MAX and ROM. In addition, MAX ankle flexion and their LESS score improved an average of 8.1 in the pre-test to 4.0 in the post-test. When considering performance variables, no differences between Control Group and Video Group were found in shot accuracy or vertical jump height, whilst horizontal jump distance in the Video Group became greater over time. Conclusion: Overlay visual feedback is an effective method to improve landing kinematics during a sport-specific jump shot. Further research is now warranted to determine the long-term effects and transfer to training and game situations.
Literature highlights the need for research on changes in lumbar movement patterns, as potential mechanisms underlying the persistence of low-back pain. Variability and local dynamic stability are frequently used to characterize movement patterns. In view of a lack of information on reliability of these measures, we determined their within- and between-session reliability in repeated seated reaching. Thirty-six participants (21 healthy, 15 LBP) executed three trials of repeated seated reaching on two days. An optical motion capture system recorded positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion–extension, lateral bending, axial rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Reliability was evaluated using intraclass correlation coefficients (ICC), coefficients of variation (CV) and Bland-Altman plots. Sufficient reliability was defined as an ICC ≥ 0.5 and a CV < 20%. To determine the effect of number of repetitions on reliability, analyses were performed for the first 10, 20, 30, and 40 repetitions of each time series. MeanSD, CyclSD, and the LDE had moderate within-session reliability; meanSD: ICC = 0.60–0.73 (CV = 14–17%); CyclSD: ICC = 0.68 (CV = 17%); LDE: ICC = 0.62 (CV = 5%). Between-session reliability was somewhat lower; meanSD: ICC = 0.44–0.73 (CV = 17–19%); CyclSD: ICC = 0.45–0.56 (CV = 19–22%); LDE: ICC = 0.25–0.54 (CV = 5–6%). MeanSD, CyclSD and the LDE are sufficiently reliable to assess lumbar movement patterns in single-session experiments, and at best sufficiently reliable in multi-session experiments. Within-session, a plateau in reliability appears to be reached at 40 repetitions for meanSD (flexion–extension), meanSD (axial-rotation) and CyclSD.
MULTIFILE