Service of SURF
© 2025 SURF
Energy conservation is crucial in wireless ad hoc sensor network design to increase network lifetime. Since communication consumes a major part of the energy used by a sensor node, efficient communication is important. Topology control aims at achieving more efficient communication by dropping links and reducing interference among simultaneous transmissions by adjusting the nodes’ transmission power. Since dropping links make a network more susceptible to node failure, a fundamental problem in wireless sensor networks is to find a communication graph with minimum interference and minimum power assignment aiming at an induced topology that can satisfy fault-tolerant properties. In this paper, we examine and propose linear integer programming formulations and a hybrid meta-heuristic GRASP/VNS (Greedy Randomized Adaptive Search Procedure/Variable Neighborhood Search) to determine the transmission power of each node while maintaining a fault-tolerant network and simultaneously minimize the interference and the total power consumption. Optimal biconnected topologies for moderately sized networks with minimum interference and minimum power are obtained using a commercial solver. We report computational simulations comparing the integer programming formulations and the GRASP/VNS, and evaluate the effectiveness of three meta-heuristics in terms of the tradeoffs between computation time and solution quality. We show that the proposed meta-heuristics are able to find good solutions for sensor networks with up to 400 nodes and that the GRASP/VNS was able to systematically find the best lower bounds and optimal solutions.
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
Many quality aspects of software systems are addressed in the existing literature on software architecture patterns. But the aspect of system administration seems to be a bit overlooked, even though it is an important aspect too. In this work we present three software architecture patterns that, when applied by software architects, support the work of system administrators: PROVIDE AN ADMINISTRATION API, SINGLE FILE LOCATION, and CENTRALIZED SYSTEM LOGGING. PROVIDE AN ADMINISTRATION API should solve problems encountered when trying to automate administration tasks. The SINGLE FILE LOCATION pattern should help system administrators to find the files of an application in one (hierarchical) place. CENTRALIZED SYSTEM LOGGING is useful to prevent coming up with several logging formats and locations. Abstract provided by the authors. Published in PLoP '13: Proceedings of the 20th Conference on Pattern Languages of Programs ACM.