Service of SURF
© 2025 SURF
A construction method is given for all factors that satisfy the assumptions of the model for factor analysis, including partially determined factors where certain error variances are zero. Various criteria for the seriousness of indeterminacy are related. It is shown that B. F. Green's (1976) conjecture holds: For a linear factor predictor the mean squared error of prediction is constant over all possible factors. A simple and general geometric interpretation of factor indeterminacy is given on the basis of the distance between multiple factors. It is illustrated that variable elimination can have a large effect on the seriousness of factor indeterminacy. A simulation study reveals that if the mean square error of factor prediction equals .5, then two thirds of the persons are "correctly" selected by the best linear factor predictor. (PsycINFO Database Record (c) 2009 APA, all rights reserved)
MULTIFILE
The subject of factor indeterminacy has a vast history in factor analysis (Guttman, 1955; Lederman, 1938; Wilson, 1928). It has lead to strong differences in opinion (Steiger, 1979). The current paper gives necessary and sufficient conditions for observability of factors in terms of the parameter matrices and a finite number of variables. Five conditions are given which rigorously define indeterminacy. It is shown that (un)observable factors are (in)determinate. Specifically, the indeterminacy proof by Guttman is extended to Heywood cases. The results are illustrated by two examples and implications for indeterminacy are discussed.
The assumptions of the model for factor analysis do not exclude a class of indeterminate covariances between factors and error variables (Grayson, 2003). The construction of all factors of the model for factor analysis is generalized to incorporate indeterminate factor-error covariances. A necessary and sufficient condition is given for indeterminate factor-error covariances to be arbitrarily small, for mean square convergence of the regression predictor of factor scores, and for the existence of a unique determinate factor and error variable. The determinate factor and error variable are uncorrelated and satisfy the defining assumptions of factor analysis. Several examples are given to illustrate the results.
LINK