Service of SURF
© 2025 SURF
Author supplied: "Abstract—Software architecture compliance checking (SACC) is an approach to monitor the consistency between the intended and the implemented architecture. In case of static SACC, the focus is mainly on the detection of dependencies that violate architectural relation rules. Interpretation of reported violations may be cumbersome, since the violations need to be connected to architectural resolutions and targeted qualities such as maintainability and portability. This paper describes an SACC case study which shows that inclusion of different types of rules in the SACC process enhances reasoning on architecture violations, especially if a rule type is related to specific architectural pattern. The SACC is performed with HUSACCT, an SACC-tool that provides rich sets of module and rule types in support of patterns such as layers, facade, and gateway. The case system is a governmental system developed in C#, which follows the .NET common application architecture. Even though the system appeared to be well-structured, the SACC revealed that 10 of the 17 architectural rules were violated."
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
In the past decade additive manufacturing has gained an incredible traction in the construction industry. The field of 3D concrete printing (3DCP) has advanced significantly, leading to commercially viable housing projects. The use of concrete represents a challenge because of its environmental impact and CO2 footprint. Due to its material properties, structural capacity and ability to take on complex geometries with relative ease, concrete is and will remain for the foreseeable future a key construction material. The framework required for casting concrete, in particular non-orthogonal geometries, is in itself wasteful, not reusable, contributing to its negative environmental impact. Non-standard, complex geometries generally require the use of moulds and subsystems to be produced, leading to wasteful, material-intense manufacturing processes, with high carbon footprints. This research proposal bypasses the use of wasteful scaffolding and moulds, by exploring 3D printing with concrete on reusable substructures made of sand, clay or aggregate. Optimised material depositing strategies for 3DCP will be explored, by making use of algorithmic structural optimisation. This way, material is deposited only where structurally needed, allowing for further reduction of raw-material use. This collaboration between Neutelings Riedijk Architects, Vertico and the Architectural Design and Engineering Chair of the TU Eindhoven, investigates full-scale additive manufacturing of spatially complex 3D-concrete printed components using multi-material support systems (clay, sand and aggregates). These materials can be easily shaped multiple times into substrates with complex geometries, without generating material waste. The 3D concrete printed full-scale prototypes can be used as lightweight façade elements, screens or spatial dividers. To generate waterproof components, the cavities of the extruded lattices can be filled up with lightweight clay or cement. This process allows for the exploration of new aesthetic, creative and circular possibilities, complex geometries and new material expressions in architecture and construction, while reducing raw-material use and waste.
Façades have a high environmental and economic impact: they contribute 10-30% to GHG emissions and 30-40% of the building investment of new buildings [1]. Modern façades are highly optimized complex systems that consist of multiple components with varying life cycles [2]; however, many of the materials they employ are critical, and have a high CO2 footprint [3, 4]. New bio-composite facades products have emerged (a) whose mechanical properties are comparable to those of aluminum or glass fibre; (b) have a lower energy footprint; and (c) can fully or partially biodegrade [5]. Moreover, primary material sourcing from different waste streams can significantly lower the end products’ pricing. Still, their aesthetic qualities have not been sufficiently explored, so the scalability of their production remains limited. This project will develop specific combinations of bio-composites using food waste fillers and a biopolymer resin. Sheet samples will be made from these combinations and further tested against their mechanical properties, water resistance, aging and weathering. A Life Cycle Analysis will further consolidate the samples’ energy footprint. A new facade cladding tile product system with complex geometry using the overall best performing material composition will be designed and prototyped [17]. Emphasis will be given to the aesthetical properties of the tiles and their demountability. The system tiles will be further applied and tested at 1:1 scale, at The Green Village. During the project, an advisory board consisting of several companies within the building industry will be systematically consulted and their feedback will help the overall design process and their respective end products.
In de eindrapportage van het RaakPro IMDEP project [1] hebben we aangegeven dat ten aanzien van demo 6 niet alle gestelde onderzoeksvragen beantwoord konden worden. Het plan was om de in Nederland ontwikkelde CIGS zonnecelmodule van Solliance op een façade te vergelijken met verschillende commerciële dunne film zonnecel-modules en een standaard silicium zonnecel module op de balustrade van het balkon van Flexhouse. In het IMDEP project zijn voor november 2015 wel de 2 commerciële dunne film zonnecelmodules en de standaard silicium zonnecel modules gerealiseerd. Na overleg met projectpartner TNO-Solliance is komen vast te staan dat de benodigde dunne CIGS modules van Solliance binnen de projectperiode van IMDEP niet te voorzien waren, maar wel voor het einde van 2016. Bij het eindevent waar meer dan 40 bedrijven uit de zonne-energie en bouw wereld aanwezig waren, werd nogmaals herhaalt dat ze graag meer kennisinteractie en informatie over de ontwikkelingen van (dunne) film zonnepaneel wilde krijgen. We zouden graag in de periode tot januari 2018 de volgende onderzoeksvraag, die we in het IMDEP project niet konden afronden en in de eindrapportage en eindevent benoemd is, dan ook graag in de Top-up regeling van SIA willen onderzoeken. Dit in nauwe samenwerking met Solliance. Hoe is de performance (elektrische opbrengst) en de reliability van het CIGS product van Solliance ten opzichte van commerciële producten standaard silicium, commerciële CIGS en dunne film silicium producten in een gevel toepassing gedurende een periode van een half jaar en kunnen deze produkten op korte termijn op de markt een rol gaan spelen? Dit top-up project is voor Solliance en Hyet van belang omdat het inzicht geeft in hoe hun producten zich verhouden tot de commerciële producten en hoe hun producten door hun potentiele klanten ontvangen worden. De Wijk van Morgen bij Zuyd Hogeschool is een ideale locatie om bedrijven en onderzoeksgroepen bij deze ontwikkelingen te helpen. Voor dunne film zonnepanelen wordt een grote markt verwacht, omdat ze: - veel lichter gemaakt kunnen worden; - makkelijker op maat gemaakt kunnen worden; - en op grote schaal ook goedkoper gemaakt kunnen worden. Installateurs en andere partijen in de bouwwereld zijn zeer geintereseerd naar de komst van deze produkten, omdat ze nieuwe markten voor hun kunnen openen, waar nu niet silicium zonnepanelen gebruikt kunnen worden. Mede het IMDEP project is aanjager geweest voor het lectoraat Zonne-energie in de Gebouwde Omgeving. Het heeft de mogelijkheid geboden om kennis uit te bouwen over demonstratie en monitoring van zonnepanelen. Het heeft in 2016 geleid tot een onderzoekslijn van 4 fte, waarbinnen 2 TKI projecten en 1 Interreg project lopen. Dit Top-up project geeft de mogelijkheid om deze onderzoekslijn verder te versterken. [1] Eindrapportage IMDEP, 26-4-2016.