Service of SURF
© 2025 SURF
Currently, 4% of older adults reside in long-term care facilities in the Netherlands. Nursing home residents tend to have multimorbidity that is associated with considerable disabilities and a high level of care dependency. In the Dutch adult population the highest estimated prevalence (>40%) of visual impairment (low vision and blindness) was found in the subgroup of residents in nursing homes (NHs). The aim of this study is to describe the current practice of eye care by Dutch nursing home physicians (NHPs). A digital online survey was developed to describe the eye care activities of nursing home physicians and their cooperation in this perspective with other professionals. Of 1573 NHPs present in the Netherlands, 125 (8%) responded. Results show that more than 50% of the NHPs regularly examine ‘distant vision’, ‘near vision’ and ‘the visual field’ . However, 23%, 33% and 45% almost never or never examine the ‘visual field’, ‘near vision’ and ‘distant vision’, respectively. Data regarding eye care, regularly recorded in the client files by more than 50% of the NHPs, are medical data involving ‘use of eye medication’, ‘eye disease’, and ‘eye surgery in the past’. Less commonly recorded is ‘the use of reading glasses’ as well as ‘eye pain’. Inside of the NH, (head) nurses and ward nurses (chi 2 = 309, df = 5, p = 0.000), and outside of the NH, ophthalmologists and low vision specialists are most frequently contacted about eye related issues (chi 2 = 224, df = 4, p = 0.000). Opticians are rarely contacted, and optometrists and orthoptists are ‘never’ contacted by more than 50% of the NHPs. Moreover, 50% of the NHPs noted that collaboration with external eye care professionals is ‘not structural’. This study shows that, according to NHPs, relevant visual aspects are not structurally examined and recorded in the client files. Outside of the NH, NHPs tend to have a less frequent collaborative relationship with optometrists, orthoptists and opticians compared to ophthalmologists and low vision specialists. The NHP’s role in providing eye care can be improved by development of guidelines for structural eye screening, improvement of recording in client files, and exploring plus undertaking collaboration with other eye care professionals.
LINK
Background: The COVID-19 pandemic taught us how to rethink care delivery. It catalyzed creative solutions to amplify the potential of personnel and facilities. This paper presents and evaluates a promptly introduced triaging solution that evolved into a tool to tackle the ever-growing waiting lists at an academic ophthalmology department, the TeleTriageTeam (TTT). A team of undergraduate optometry students, tutor optometrists, and ophthalmologists collaborate to maintain continuity of eye care. In this ongoing project, we combine innovative interprofessional task allocation, teaching, and remote care delivery. Objective: In this paper, we described a novel approach, the TTT; reported its clinical effectiveness and impact on waiting lists; and discussed its transformation to a sustainable method for delivering remote eye care. Methods: Real-world clinical data of all patients assessed by the TTT between April 16, 2020, and December 31, 2021, are covered in this paper. Business data on waiting lists and patient portal access were collected from the capacity management team and IT department of our hospital. Interim analyses were performed at different time points during the project, and this study presents a synthesis of these analyses. Results: A total of 3658 cases were assessed by the TTT. For approximately half (1789/3658, 48.91%) of the assessed cases, an alternative to a conventional face-to-face consultation was found. The waiting lists that had built up during the first months of the pandemic diminished and have been stable since the end of 2020, even during periods of imposed lockdown restrictions and reduced capacity. Patient portal access decreased with age, and patients who were invited to perform a remote, web-based eye test at home were on average younger than patients who were not invited. Conclusions: Our promptly introduced approach to remotely review cases and prioritize urgency has been successful in maintaining continuity of care and education throughout the pandemic and has evolved into a telemedicine service that is of great interest for future purposes, especially in the routine follow-up of patients with chronic diseases. TTT appears to be a potentially preferred practice in other clinics and medical specialties. The paradox is that judicious clinical decision-making based on remotely collected data is possible, only if we as caregivers are willing to change our routines and cognitions regarding face-to-face care delivery.
LINK
Abstract: Background: There has been a rapid increase in the population of senior citizens in many countries. The shortage of caregivers is becoming a pressing concern. Robots are being deployed in an attempt to fill this gap and reduce the workload of caregivers. This study explores how healthcare robots are perceived by trainee care professionals. Methods: A total of 2365 students at different vocational levels completed a questionnaire, rating ethical statements regarding beneficence, maleficence, justice, autonomy, utility, and use intentions with regard to three different types of robots (assistive, monitoring, and companion) along with six control variables: gender, age, school year, technical skills, interest in technology, and enjoying working with computers.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.