Service of SURF
© 2025 SURF
Research question: The current study investigates the income elasticities and socio-economic determinants of direct and indirect sports expenditure categories by means of a log normal hurdle regression. Research methods: The data stem from a representative sample of 3005 Flemish families with school-aged children, gathered through a sports-specific survey. A log normal hurdle regression was used to calculate the determining factors and expenditure elasticities of expenditure on sports participation. Results and findings: The results indicate that income, education and the age of the youngest child are positively related to almost all sports expenditure categories, while the number of family members and degree of urbanisation are significant for only a number of the expenditure categories. The elasticity value of the direct sports expenses is smaller than is the case for indirect sports expenditure. Between the expenditure categories large differences exist, as relatively large elasticities are found for sports holidays, transport and sports food and drinks, as opposed to low values of sports events, sports club membership, entrance fees for sports infrastructure, sports camps, clothing, footwear and equipment. Implications: The fact that income significantly influences all expenditure categories demonstrates that further policy intervention is required to make sports consumption more accessible to lower income groups. Sports enterprises and policymakers need to be aware that negative income shifts have a more profound impact on the indirect expenditure categories, and that certain sports activities (e.g. participation events) are relatively more favoured by low-income groups than is the case for sports club membership
LINK
It has been suggested that physical education (PE) and active transport can make a meaningful contribution to children's physical activity (PA) levels. However, data on the contribution these activities to total PA is scarce, and PE's contribution to total physical activity energy expenditure (PAEE) has to our knowledge never been determined. This is probably explained by the methodological complexity of determining PAEE (Welk, 2002). In this paper, we present the first data of an ongoing study using combined heart rate monitoring and accelerometry, together with activity diaries. Over the six measurement days, PE contributed 5% to total PAEE, and 16% to school-related PAEE, whereas active transportation had a much larger contribution.
Substitution is an essential tool for a coach to influence the match. Factors like the injury of a player, required tactical changes, or underperformance of a player initiates substitutions. This study aims to predict the physical performance of individual players in an early phase of the match to provide additional information to the coach for his decision on substitutions. Tracking data of individual players, except for goalkeepers, from 302 elite soccer matches of the Dutch ‘Eredivisie’ 2018–2019 season were used to enable the prediction of the individual physical performance. The players’ physical performance is expressed in the variables distance covered, distance in speed category, and energy expenditure in power category. The individualized normalized variables were used to build machine learning models that predict whether players will achieve 100%, 95%, or 90% of their average physical performance in a match. The tree-based algorithms Random Forest and Decision Tree were applied to build the models. A simple Naïve Bayes algorithm was used as the baseline model to support the superiority of the tree-based algorithms. The machine learning technique Random Forest combined with the variable energy expenditure in the power category was the most precise. The combination of Random Forest and energy expenditure in the power category resulted in precision in predicting performance and underperformance after 15 min in a match, and the values were 0.91, 0.88, and 0.92 for the thresholds 100%, 95%, and 90%, respectively. To conclude, it is possible to predict the physical performance of individual players in an early phase of the match. These findings offer opportunities to support coaches in making more informed decisions on player substitutions in elite soccer.