The way that innovation is currently done requires a new research methodology that enables co-creation and frequent, iterative evaluation in realworld settings. This paper describes the employment of the living lab methodology that corresponds to this need. Particularly, this paper presents the way that the Amsterdam University of Applies Sciences (HvA) incorporates living labs in its educational program with a particular focus on ambient intelligence. A number of examples are given to illustrate its place in the university’s curriculum. Drawing on from this, problems and solutions are highlighted in a ‘lessons learned’ section.
The way that innovation is currently done requires a new research methodology that enables co-creation and frequent, iterative evaluation in realworld settings. This paper describes the employment of the living lab methodology that corresponds to this need. Particularly, this paper presents the way that the Amsterdam University of Applies Sciences (HvA) incorporates living labs in its educational program with a particular focus on ambient intelligence. A number of examples are given to illustrate its place in the university’s curriculum. Drawing on from this, problems and solutions are highlighted in a ‘lessons learned’ section.
Poster KIM voor de ECR is nu online te zien via EPOS: https://epos.myesr.org/poster/esr/ecr2022/C-16092 posternummer: C-16092, ECR 2022 Purpose Artificial Intelligence (AI) has developed at high speed the last few years and will substantially change various disciplines (1,2). These changes are also noticeable in the field of radiology, nuclear medicine and radiotherapy. However, the focus of attention has mainly been on the radiologist profession, whereas the role of the radiographer has been largely ignored (3). As long as AI for radiology was focused on image recognition and diagnosis, the little attention for the radiographer might be justifiable. But with AI becoming more and more a part of the workflow management, treatment planning and image reconstruction for example, the work of the radiographer will change. However, their training (courses Medical Imaging and Radiotherapeutic Techniques) hardly contain any AI education. Radiographers in the Netherlands are therefore not prepared for changes that will come with the introduction of AI into everyday work.
LINK
The Hospitality, Tourism, Innovation & Technology Experts Network (HTIT-EN) is a pivotal initiative aimed at unlocking societal impact potential. The Dutch hospitality and tourism sector, which employs over half a million individuals and annually hosts more than 40 million guests, ranks as the Netherlands’ 8th largest economic sector. However, this sector faces numerous challenges, including the uncertain impact of emerging technologies and issues such as unethical behavior, workforce attrition, and staff shortages, which have been exacerbated by the COVID-19 pandemic. The advent of emerging technologies like service robots, immersive experiences, and artificial intelligence has brought the sector to a critical juncture. These innovations pose significant disruptions, challenging the traditional concept of hospitality and questioning the positive societal impact in terms of ethical considerations, inclusivity, affordability, and data privacy.Strategically positioned to address these challenges, HTIT-EN focuses on leveraging emerging technologies to create impactful scenarios and shape the future of hospitality and tourism. Our motivation stems from the sector’s societal importance and its continuous influence on our daily lives. By harnessing technology and innovation, we aim to tackle industry-specific issues and extend the positive societal impact to related human-centered service industries.The overarching mission of HTIT-EN is to empower the Dutch Hospitality and Tourism sector to serve as a driving force for technology-enabled societal impact. The primary objective is to align research activities and promote collaboration. Key objectives include bringing together leading professors specializing in technology-driven impact within the hospitality and tourism sector, initiating research projects in line with a shared research agenda and in collaboration with local and international industry partners, and collaboratively developing expertise in emerging technologies that empower the role of hospitality and tourism as catalysts for societal impact. This endeavor contributes to the development and acceleration of the Knowledge and Innovation Agenda (KIA) ‘Key technologies’ & ‘Digitalization’. The aim is to foster an excellent reputation for Dutch hospitality and tourism as a global leader in technology-driven societal impact.We have strong support from CELTH, the Centre of Expertise within the domain of leisure, tourism and hospitality for the overall ambitions of the research project.Societal issueThe HTIT-EN project bridges societal importance and cross-cutting issues in the tourism and hospitality sectors. It’s fueled by the ambition to leverage emerging technologies to tackle industry-specific challenges, including knowledge and skills gaps, labor shortages and replacements, and evolving consumer expectations.Benefit to societyThe platform brings together professors and researchers from MBO, HBO and WO knowledge institutes as well as diverse set of professional partners to stimulate collaboration, align research lines and establish joint a joint research agenda on how technology-driven impact may become a catalyst within hospitality and tourism.
Smart city technologies, including artificial intelligence and computer vision, promise to bring a higher quality of life and more efficiently managed cities. However, developers, designers, and professionals working in urban management have started to realize that implementing these technologies poses numerous ethical challenges. Policy papers now call for human and public values in tech development, ethics guidelines for trustworthy A.I., and cities for digital rights. In a democratic society, these technologies should be understandable for citizens (transparency) and open for scrutiny and critique (accountability). When implementing such public values in smart city technologies, professionals face numerous knowledge gaps. Public administrators find it difficult to translate abstract values like transparency into concrete specifications to design new services. In the private sector, developers and designers still lack a ‘design vocabulary’ and exemplary projects that can inspire them to respond to transparency and accountability demands. Finally, both the public and private sectors see a need to include the public in the development of smart city technologies but haven’t found the right methods. This proposal aims to help these professionals to develop an integrated, value-based and multi-stakeholder design approach for the ethical implementation of smart city technologies. It does so by setting up a research-through-design trajectory to develop a prototype for an ethical ‘scan car’, as a concrete and urgent example for the deployment of computer vision and algorithmic governance in public space. Three (practical) knowledge gaps will be addressed. With civil servants at municipalities, we will create methods enabling them to translate public values such as transparency into concrete specifications and evaluation criteria. With designers, we will explore methods and patterns to answer these value-based requirements. Finally, we will further develop methods to engage civil society in this processes.