Service of SURF
© 2025 SURF
Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an urge for novel types of dietary fibers that do not cause unwanted sensory effects when applied as ingredient, while still positively contributing to the health of consumers. Here, we report the generation and characterization of a novel type of soluble dietary fiber with prebiotic properties, derived from starch via enzymatic modification,yielding isomalto/malto-polysaccharides (IMMPs), which consist of linear (α1 → 6)-glucan chains attached to the nonreducing ends of starch fragments. The applied Lactobacillus reuteri 121 GTFB 4,6-α-lucanotransferase enzyme synthesizes these molecules by transferring the nonreducing glucose moiety of an (α1 → 4)-glucan chain to the nonreducing end of another (α1 → 4)-α-glucan chain, forming an (α1 → 6)-glycosidic linkage. Once elongated in this way, the molecule becomes a better acceptor substrate and is then further elongated with (α1 → 6)-linked glucose residues in a linear way. Comparison of 30 starches, maltodextrins, and α-glucans of various botanical sources, demonstrated that substrates with long and linear (α1 → 4)- glucan chains deliver products with the highest percentage of (α1 → 6) linkages, up to 92%. In vitro experiments, serving as model of the digestive power of the gastrointestinal tract, revealed that the IMMPs, or more precisely the IMMP fraction rich in (α1 → 6) linkages, will largely pass the small intestine undigested and therefore end up in the large intestine. IMMPs are a novel type of dietary fiber that may have health promoting activity.
The transition to a biobased economy necessitates utilizing renewable resources as a sustainable alternative to traditional fossil fuels. Bioconversion is a way to produce many green chemicals from renewables, e.g., biopolymers like PHAs. However, fermentation and bioconversion processes mostly rely on expensive, and highly refined pure substrates. The utilization of crude fractions from biorefineries, especially herbaceous lignocellulosic feedstocks, could significantly reduce costs. This presentation shows the microbial production of PHA from such a crude stream by a wild-type thermophilic bacterium Schlegelella thermodepolymerans [1]. Specifically, it uses crude xylose-rich fractions derived from a newly developed biorefinery process for grassy biomasses (the ALACEN process). This new stepwise mild flow-through biorefinery approach for grassy lignocellulosic biomass allows the production of various fractions: a fraction containing esterified aromatics, a monomeric xylose-rich stream, a glucose fraction, and a native-like lignin residue [2]. The crude xylose-rich fraction was free of fermentation-inhibiting compounds meaning that the bacterium S.thermodepolymerans could effectively use it for the production of one type of PHA, polyhydroxybutyrate. Almost 90% of the xylose in the refined wheat straw fraction was metabolized with simultaneous production of PHA, matching 90% of the PHA production per gram of sugars, comparable to PHA yields from commercially available xylose. In addition to xylose, S. thermodepolymerans converted oligosaccharides with a xylose backbone (xylans) into fermentable xylose, and subsequently utilized the xylose as a source for PHA production. Since the xylose-rich hydrolysates from the ALACEN process also contain some oligomeric xylose and minor hemicellulose-derived sugars, optimal valorization of the C5-fractions derived from the refinery process can be obtained using S. thermodepolymerans. This opens the way for further exploration of PHA production from C5-fractions out of a variety of herbaceous lignocellulosic biomasses using the ALACEN process combined with S. thermodepolymerans. Overall, the innovative utilization of renewable resources in fermentation technology, as shown herein, makes a solid contribution to the transition to a biobased economy.[1] W. Zhou, D.I. Colpa, H. Permentier, R.A. Offringa, L. Rohrbach, G.J.W. Euverink, J. Krooneman. Insight into polyhydroxyalkanoate (PHA) production from xylose and extracellular PHA degradation by a thermophilic Schlegelella thermodepolymerans. Resources, Conservation and Recycling 194 (2023) 107006, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2023.107006. [2] S. Bertran-Llorens, W.Zhou. M.A.Palazzo, D.I.Colpa, G.J.W.Euverink, J.Krooneman, P.J.Deuss. ALACEN: a holistic herbaceous biomass fractionation process attaining a xylose-rich stream for direct microbial conversion to bioplastics. Submitted 2023.
LINK
Lignocellulose biorefining is a promising technologyfor the sustainable production of chemicals and biopolymers.Usually, when one component is focused on, the chemical natureand yield of the others are compromised. Thus, one of thebottlenecks in biomass biorefining is harnessing the maximumvalue from all of the lignocellulosic components. Here, we describea mild stepwise process in a flow-through setup leading to separateflow-out streams containing cinnamic acid derivatives, glucose,xylose, and lignin as the main components from differentherbaceous sources. The proposed process shows that minimaldegradation of the individual components and conservation oftheir natural structure are possible. Under optimized conditions,the following fractions are produced from wheat straw based ontheir respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51%monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation ofcellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the ligninaryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, thecrude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-richfraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercialpure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of theprincipal components of herbaceous biomasses.
In the context of sustainability, the use of biocatalysis in organic synthesis is increasingly observed as an essential tool towards a modern and ‘green’ chemical industry. However, the lack of a diverse set of commercially available enzymes with a broad selectivity toward industrially-relevant substrates keeps hampering the widespread implementation of biocatalysis. Aminoverse B.V. aims to contribute to this challenge by developing enzymatic screening kits and identifying novel enzyme families with significant potential for biocatalysis. One of the most important, yet notoriously challenging reaction in organic synthesis is site-selective functionalization (e.g. hydroxylation) of inert C-H bonds. Interestingly, Fe(II)/α-ketoglutarate-dependent oxygenases (KGOs) have been found to perform C-H hydroxylation, as well as other oxyfunctionalization, spontaneously in nature. However, as KGOs are not commercially available, or even extensively studied in this context, their potential is not readily accessible to the chemical industry. This project aims to demonstrate the potential of KGOs in biocatalysis. In order to achieve this, the following challenges will be addressed: i) establishing an enzymatic screening methodology to study the activity and selectivity of recombinant KGOs towards industrially relevant substrates, ii) establishing analytical methods to characterize KGO-catalyzed substrate conversion and product formation. Eventually, the proof-of-principle demonstrated during this project will allow Aminoverse B.V. to develop a commercial biocatalysis kit comprised of KGO enzymes with a diverse activity profile, allowing their application in the sustainable production of either commodity, fine or speciality chemicals. The project consortium is composed of: i) Aminoverse B.V, a start-up company dedicated to facilitate chemical partners towards implementing biocatalysis in their chemical processes, and ii) Zuyd University, which will link Aminoverse B.V. with students and (bio)chemical professionals in creating a novel collaboration which will not only stimulate the development of (bio)chemical students, but also the translation of academic knowledge on KGOs towards a feasible biocatalytic application.