Service of SURF
© 2025 SURF
from the article: Abstract Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it is multidimensional in character, is assessed largely in subjective terms and varies across time. The paper explores three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’ and illustrates the dilemmas that urban planners face in answering these questions. The three questions provide a novel framework that offers urban planners perspectives for action in finding their way out of the dilemmas identified. Rather than further detailing the exact nature of urban quality, these perspectives call for an approach to urban planning that is integrated, participative and adaptive. ; ; sustainable urban development; trade-offs; quality dimensions
Een holistisch perspectief op binnenstedelijke herontwikkeling Spatial Planning http://www.uu.nl/agenda/promotie-een-holistisch-perspectief-op-binnenstedelijke-herontwikkeling Promovendus Rien van Stigt onderzoekt waarom het moeilijk is om milieukwaliteit een prominente plaats te geven in de besluitvorming over ruimtelijke plannen. In zijn proefschrift ontwikkelt hij een holistisch perspectief op het complexe proces van compacte binnenstedelijke herontwikkeling. De kwaliteit van de stedelijke leefomgeving is essentieel in duurzame stedelijke ontwikkeling. Die kwaliteit staat met name bij compacte binnenstedelijke herontwikkeling onder druk, en daarom is milieukwaliteit een belangrijke factor in het plannen van zulke ontwikkelingen. Uit de literatuur over de integratie van milieubeleid blijkt dat dit, vooral op lagere bestuurlijke niveaus, niet altijd goed lukt. Er is nog geen overtuigende verklaring waarom dit zo is. Promotor(es): Prof.dr. P.P.J. Driessen en Prof.dr. T.J.M. Spit
From the article : "Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it ismultidimensional in character, is assessed largely in subjective terms and varies across time. A novel perspective of urban environmental quality is proposed, simultaneously exploring three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’. The dilemmas that urban planners face in answering these questions are illustrated using secondary material. This approach provides perspectives for action. Rather than further detailing the exact nature of urban quality, it calls for sustainable urban environmental quality planning that is integrated, participative and adaptive" ( wileyonlinelibrary.com ) DOI: 10.1002/eet.1759 - Preprint available for free download.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.
Cell-based production processes in bioreactors and fermenters need to be carefully monitored due to the complexity of the biological systems and the growth processes of the cells. Critical parameters are identified and monitored over time to guarantee product quality and consistency and to minimize over-processing and batch rejections. Sensors are already available for monitoring parameters such as temperature, glucose, pH, and CO2, but not yet for low-concentration substances like proteins and nucleic acids (DNA). An interesting critical parameter to monitor is host cell DNA (HCD), as it is considered an impurity in the final product (downstream process) and its concentration indicates the cell status (upstream process). The Molecular Biosensing group at the Eindhoven University of Technology and Helia Biomonitoring are developing a sensor for continuous biomarker monitoring, based on Biosensing by Particle Motion. With this consortium, we want to explore whether the sensor is suitable for the continuous measurement of HCD. Therefore, we need to set-up a joint laboratory infrastructure to develop HCD assays. Knowledge of how cells respond to environmental changes and how this is reflected in the DNA concentration profile in the cell medium needs to be explored. This KIEM study will enable us to set the first steps towards continuous HCD sensing from cell culture conditions controlling cell production processes. It eventually generates input for machine learning to be able to automate processes in bioreactors and fermenters e.g. for the production of biopharmaceuticals. The project entails collaboration with new partners and will set a strong basis for subsequent research projects leading to scientific and economic growth, and will also contribute to the human capital agenda.