Service of SURF
© 2025 SURF
The conservation of our heritage buildings is a European wide policy objective. Historical buildings are not only works of art, but embody an important source of local identity and form a connection to our past. Protection agencies aim to preserve historical qualities for future generations. Their work is guided by restoration theory, a philosophy developed and codified in the course of the 19th and 20th century. European covenants, such as the Venice Charter, express shared views on the conservation and restoration of built heritage. Today, many users expect a building with modern comfort as well as a historical appearance. Moreover, new functionality is needed for building types that have outlived their original function. For example, how to reuse buildings such as old prisons, military barracks, factories, or railway stations? These new functions and new demands pose a challenge to restoration design and practices. Another, perhaps conflicting EU policy objective is the reduction of energy use in the built environment, in order to reach climate policy goals. Roughly 40% of the consumption of energy takes place in buildings, either in the production or consumption phase. However, energy efficiency is especially difficult to achieve in the case of historical buildings, because of strict regulations aimed at protecting historical values. Recently, there has been growing interest in energy efficient restoration practices in the Netherlands, as is shown by the 'energy-neutral' restoration of Villa Diederichs in Utrecht, the 'Boostencomplex' in Maastricht and De Tempel in The Hague. Although restoration of listed buildings is obviously focused on the preservation of historical values, with the pressing demands from EU climate policy the energy efficiency of historical building
MULTIFILE
Sporen uit het verleden zijn het waard bewaard te wordenvoor volgende generaties!In het onderzoeksproject Energieke Restauratie (2011-2013)van het kenniscentrum NoorderRuimte istwee jaar onderzoek gedaan naar restauratie, energieconceptenen herontwikkeling van historische gebouwen. Dit project,gefinancierd door SIA-RAAK, werd uitgevoerd in samenwerkingmet vele bedrijven en instellingen in Noord-Nederland.Energieke Restauratie verwijst naar een integrale aanpak vanbehoud en vernieuwing in historische gebouwen, met eenhoge ambitie voor energiebesparing.Een ‘Energieke Restauratie’ begint met het herkennen vanwensen en randvoorwaarden in het vooronderzoek. Zo wordtbij het ontwerp rekening gehouden met historische waarden,energie, en gebruikerswensen. Uiteraard wordt er bij derestauratie van een historisch gebouw veel aandacht besteedaan effecten op de lange termijn, bijvoorbeeld voor hetvoorkomen van schade aan historische materialen, flexibiliteitvoor (toekomstig) gebruik, energielasten en gebruikscomfort.Op 19 september 2013 vond de afsluitende internationaleconferentie ERIC2013 plaats in Groningen. Met trots bieden wiju nu het magazine Energieke Restauratie aan, waarin u korteweergaves vindt van de presentaties op ERIC2013, voornamelijkin het Engels. Bovendien zijn de volledige artikelen van veledeelnemers aan de conferentie opgenomen.Verder vindt u een beknopt overzicht van alle uitgevoerde casestudies van Energieke Restauratie.Tot slot bedanken wij iedereen die heeft bijgedragen aan detotstandkoming van dit magazine: de schrijvers van de artikelen,de vormgever en uiteraard de sponsors die het drukken van ditmagazine mogelijk hebben gemaakt.
Designs for improving energy efficiency in historical buildings are tailor made. For initiators the flexible character of design processes raises uncertainty about why certain energy measures are (not) allowed. How is decision making in thedesign process organised? And what mechanisms influence tailor made designs? In this paper we present an integral design method for energy efficient restoration. Our theoretical background draws on two sources. Firstly, we follow design theory with distinct generic and specific designs. Secondly we use the ‘heritage-as-a-spatial-factor’ approach, where participants with different backgrounds focus on adding value to heritage. By applying the integral design method, we evaluate decision making processes and reflect on heritage approaches. We suggest how the integral design method can be improved andquestion the parallel existence of heritage approaches.
Duurzame energie is een belangrijk thema binnen de Hanzehogeschool, maar ook in de regio Noord-Nederland. Alternatieve gassen zoals biogas en waterstof nemen daarbij een belangrijke plaats in. Veel aandacht gaat daarbij uit naar de energievoorziening op systeemniveau (als maatschappelijk vraagstuk) en naar concrete technologische oplossingen daarbinnen. Het is echter nog onduidelijk hoe vraag en aanbod van alternatieve gassen als waterstof aan elkaar gekoppeld moeten worden, hoe de infrastructuur eruit zal gaan zien en welke schaalgroottes daarbij passen. Dit roept binnen het regionale netwerk van bedrijven en binnen regionale overheden veel vragen op. Veel bedrijven zien kansen, maar zoeken naar de best passende plek binnen de energiewaardeketen. Informatie op dit gebied ontbreekt vaak of is gekleurd.Het voorgestelde onderzoek voorziet in deze leemte. Onderzocht zal worden welke biogas- en waterstofketens kansrijk zijn vanuit economisch en duurzaamheidsperspectief, gericht op de middellange termijn en de regio Noord-Nederland. De focus zal daarbij liggen op levelised cost of energy, energie-efficiëntie van de keten en CO2-reductie, waarbij de gehele energiewaardeketen van duurzame gassen beschouwd zal worden. Dit onderzoek past bij de lectoraten van de Hanzehogeschool rondom het thema Energie, en bij de lectoraten Energietransitie/Waterstoftoepassingen en Life Sciences & Renewable Energy in het bijzonder. Het is een logisch vervolg op eerdere onderzoeksprojecten van de kandidaat postdoc, die zich hebben gericht op ketenanalyses van het biogassysteem. Dit postdoc onderzoek sluit ook direct aan bij masteronderwijs dat aan de Hanzehogeschool gegeven wordt, waarbij studenten duurzame energieketens leren analyseren vanuit techno-economisch gezichtspunt, rekening houdend met duurzaamheidsaspecten. Het voorgestelde onderzoek draagt substantieel bij aan stevige verankering en continuïteit van het onderzoeksportfolio, dat op een natuurlijke en praktische manier verbonden is aan het onderwijs.
The Cashing Cashew project focuses on isolation and purification of Cashew Nut Shell Liquid (CNSL) from Cashew Nut Shells (CNS) in order to fully utilize this valuable by-product of the cashew nut production. Global cashew nut production is about 4 million mt/ tons/yr. Of the cashew nut, about 70 % is shell that is removed in processing and currently typically burned as a dirty and inefficient fuel or discarded as waste. This is not only creating an environmental issue but also wasting valuable by-products. The shell contains circa 20-30 % brown viscous liquid, Cashew Nut Shell Liquid (CNSL). This natural resin contains valuable chemical components, for example, cardanol, cardol, and anacardic acid. CNSL and its derivatives have several industrial uses as for example biobased additives, polymeric building blocks, and biodiesel. Part of the CNSL can be extracted during the roasting process prior to separating the shell and nut kernel. The shell waste still has a high CNSL concentration that can be isolated by solvents or pressing (expeller). Expeller process is simple and not capital-intensive; therefore it is commonly used. The main disadvantages of the method are the high energy consumption and that 3-5 % oil remains in the press-cake producing harmful gases in burning. Also, the resulting cake is too dense to be further processed to charcoal or other useful application. The objective of this project is to study the purification of the CNSL obtained from pyrolytic isolation to find the most efficient way of making use of the CNSL oil and the total Cashew Nut Shell biomass. An initial evaluation of potential applications is also performed.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.